реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Разработать систему управления автоматической линией гальванирования на базе японского программируемого контроллера TOYOPUC-L

U1 = 220 В

Относительное отклонение в сторону повышения :

amax = [pic]

amax = [pic] = 0,091

Относительное отклонение сети в сторону понижения

amin = [pic]

amin = [pic] = 0,091

Частота тока сети :

fс = 50 Гц

Определяем параметры диодов.

Амплитуда обратного напряжения :

Uобр. max = 1,57 [pic] U0 [pic] ( 1 +

amax ) ( 1 , ст. 323 )

Uобр. max = 1,57 [pic] 9 [pic] (1 +

0,091 ) = 15,4 В

Среднее значение прямого тока :

Iпр.ср. = 0,5 [pic] I0

( 1 , ст. 323 )

Iпр.ср. = 0,5 [pic] 3 = 1,5 А

Действующее значение тока :

Iпр. = 0,707 [pic] I0

( 1 , ст. 323 )

Iпр. = 0,707 [pic] 3 = 2,2 А

По результатам расчётов выбираем по справочнику диоды с учётом того ,

что обратное напряжение Uобр. max , приложенное к диоду , должно быть

меньше максимального обратного напряжения для выбранного типа диода , а ток

Iпр.ср должен быть меньше предельно допустимого среднего значения тока ,

указанного в справочнике.

Исходя из выше перечисленных условий выбираем для выпрямителя диоды КД

202 Г с параметрами :

Iпр.ср.max = 4 А

( 3 , ст. 36 )

Uобр.max = 200 В

Uпр.ср. = 1,5 В

Iпр.имп. = 3 А

Iобр. = 0,05 А

Определяем сопротивление трансформатора Rтр. , диода Rпр. и по их

значениям находим сопротивление фазы выпрямителя Rф.

Rтр. = [pic] ( 1 , ст. 36 )

где

В – магнитная индукция , Тл ;

j – средняя плотность тока в обмотке трансформатора , [pic] .

Принимаем :

В = 1,3 Тл ( 1 ,

cт. 325 , табл. 9.5 )

j = 3 [pic]

( 1 , ст. 325 , табл. 9.6 )

Rтр. = [pic] = 0,44 Ом

Определяем сопротивление фазы выпрямителя.

Rф = Rтр. + 2 [pic] Rпр.

где

Rпр. – сопротивление диода.

Rпр. = [pic].

( 1 , ст. 322 )

Rпр. = [pic] = 0,38 Ом

Тогда

Rф = 0,44 + 2 [pic] 0,38 = 1,2 Ом

ОПРЕДЕЛЯЕМ НАПРЯЖЕНИЕ ХОЛОСТОГО ХОДА.

U0 хх = U0 + I0 [pic] Rтр. + Uпр. [pic] N

где

N – число диодов , работающих одновременно.

Для мостовой схемы , которая принимается

N = 2

( 1 , ст. 324 )

U0 хх = 9 + 3 [pic] 0,44 + 1,5 [pic] 2 =

13,2 В

Определяем параметры трансформатора , которые будут использоваться далее

для его расчёта

Напряжение вторичной обмотки :

U2 = 1,11 [pic] U0 хх

( 1 , ст. 323 )

U2 = 1,11 [pic] 13,2 = 14,7 В

Ток во вторичной обмотке трансформатора :

I2 = 1,2 [pic] I0

( 1 , ст. 323 )

I2 = 1,2 [pic] 3 = 3,6 А

Ток в первичной обмотке трансформатора :

I1 = I2 [pic] [pic]

( 1 , ст. 323 )

I1 = 3,6 [pic] [pic] = 0,24 А

Расчёт трансформатора.

Исходные данные для расчёта приведены выше :

напряжение питающей сети :

U1 = 220 В ;

напряжение вторичной обмотки :

U2 = 9 В ;

ток во вторичной обмотке :

I2 = 3,6 А ;

ток в первичной обмотке :

I1 = 0,24 А

Определяем габаритную мощность трансформатора :

Sг = [pic] ( 1 , ст. 325 )

где

[pic] - коэффициент полезного действия.

[pic] = 0,8

( 1 , ст. 325 )

Sг = [pic] Вт

Определяем произведение площадей поперечного сечения стержня и

площадь окна.

Sст. [pic] Sок. = [pic] ( 1 , ст. 325

)

где

Sкт – площадь поперечного сечения стержня магнитопровода,см2

Sок – площадь окна , см2 ;

fc – частота питающей сети , Гц

fc = 50 Гц

В – магнитная индукция , Тл

Принимаем

В = 1,2 Тл

( 1 , ст. 326 )

j – плотность тока в проводах обмоток трансформатора , [pic]

Принимаем

j = 2,5 [pic]

( 1 , ст. 326 )

kм - коэффициент заполнения медью окна сердечника ;

Принимаем

kм = 0,37

( 1 , ст. 326 )

kс – коэффициент заполнения сталью площади поперечного

сечения стержня магнитопровода ;

Принимаем

kс = 0,91

( 1 , ст. 326 )

[pic] - коэффициент полезного действия.

Sст. [pic] Sок. = [pic] 60 см4 ( 1 , ст. 325 )

По найденному произведению Sст. [pic] Sок выбираем из справочных

таблиц магнитопровод у которого данное произведение больше или равно

расчётному. Для нашего случая ближе всего по характеристикам находится

магнитопровод ПЛ 16[pic]32[pic]50 ( 1 , ст. 132 ).

Данные магнитопровода ПЛ 16[pic]32[pic]50

Sст. [pic] Sок. = 64 см4

Sст. = 5,12 см2

Sок. = 12,5 см2

Определяем число витков первичной и вторичной обмоток трансформатора.

W1 = [pic] ( 1 ,

ст. 326 )

W2 = [pic] ( 1 ,

ст. 326 )

где

[pic]U – относительное падение напряжения в обмотках , В .

Принимаем :

[pic]U1 = 5 %

( 1 , ст. 327 )

[pic]U2 = 4 %

( 1 , ст. 327 )

В – магнитная индукция , Тл ;

Sст. – площадь стержня магнитопровода , см2 .

W1 = [pic] = 1532 ( витков )

W2 = [pic] = 68 ( витков )

Определяем диаметр проводов обмоток ( без учёта изоляции (

толщины )), мм2

dn = [pic]

( 1 , ст. 326 )

диаметр проводов первичной обмотки , мм2

d1 = [pic] = 0,14 мм2

диаметр проводов вторичной обмотки , мм2

d2 = [pic] = 1,2 мм2

Для вторичной обмотки выбираем наиболее близкое значение диаметра

проводов из стандартного ряда :

d2 = 1,3 мм2

Расчёт стабилизатора напряжения блока питания + 5 В .

Исходные данные :

входное напряжение :

Uвх = 9 В ;

изменение входного напряжения :

Uвх = [pic] 2 В ;

максимальный ток нагрузки :

Iн max = 3,6 A ;

выходное напряжение :

Uвых. = 5 В

Плавная регулировка напряжения ( выходного ) в пределах от 4 В до 6

В.

В качестве стабилизатора выбираем схему компенсационного

транзисторного стабилизатора напряжения последовательного типа.

Стабилизатор состоит из регулирующего элемента( транзисторы ),

усилителя постоянного тока , источника опорного напряжения , делителя

напряжения и резисторов . Предусмотрена возможность регулировки выходного

напряжения - для этого в цепь делителя включён переменный резистор.

Регулирующий элемент состоит из трёх транзисторов . Данное

количество выбрано исходя из того , что ток нагрузки превышает 2А ( 1 ,

ст. 328 ).

Стабилизатор выполнен на транзисторах структуры n = p = n.

Определяем параметры и выбираем транзисторы.

Транзистор VT1

Определяем максимальный ток коллектора :

Iк max = 1,2 [pic] Iн max

( 1 , ст. 329 )

Iк max = 1,2 [pic] 3,6 = 4,3 А

Определяем максимальное напряжение коллектор – эмиттер :

Uк э max = Uвх. + [pic]Uвх. – Uвых.

( 1 , ст. 329 )

Uк э max = 9 + 2 – 5 = 6 В

Определяем предельную рассеиваемую мощность коллектора :

Рк = Uк э max [pic] Iк max

( 1 , ст. 329 )

Рк = 6 [pic] 4,3 = 25,8 Вт

По результатам расчётов выбираем из справочника транзистор VT1 ,

удовлетворяющий условиям :

Uк э ,1 max [pic] Uк э max

Iк 1 max [pic] Iк max

Pк 1 [pic] Pк

Приведённым условиям удовлетворяет транзистор КТ 805 Б с параметрами :

Рк = 30 Вт

Uк э max = 135 В

Iк max = 5 А

h2 1 э = 15

Iк б 0 = 70 м А

Транзистор VT 2

Максимальный ток коллектора :

Iк max = [pic]

( 1 , ст. 329 )

Iк max = [pic] = 0,3 А

Максимальное напряжение коллектор – эмиттер :

Uк э max = Uвх. +[pic]Uвх. – Uвых.

( 1 , ст.329 )

Uк э max = 9 + 2 – 5 = 6 В

Предельная рассеиваемая мощность коллектора :

Pк = Uк э max [pic] Iк max

Pк = 6 [pic] 0,3 = 1,8 Вт

По результатам расчётов выбираем из справочника транзистор

удовлетворяющий условиям , которые указаны в расчётах транзистора VT1.

Приведённым условиям удовлетворяет транзистор КТ 603 А с параметрами:

Pк = 2 Вт

Uк э max = 30 В

Iк max = 0,3 А

h2 1 э = 15

Iк б 0 = 10 м[pic]А

Транзистор VT 3

Максимальный ток коллектора :

Iк max = [pic]

( 1 , ст. 329 )

Iк max = [pic] = 0,02 А

Максимальное напряжение коллектор – эмиттер :

Uк э 3 max = Uк э 2 max

( 1 , ст. 329 )

Uк э 3 max = 6 В

Предельная рассеиваемая мощность коллектора :

Рк = Uк э max [pic] Iк max

Рк = 6 [pic] 0,02 = 0,12 Вт

По результатам расчётов выбираем из справочника транзистор VT3. Расчётным

параметрам удовлетворяет транзистор КТ 315 А с параметрами :

Рк max = 0,15 Вт

Uк э max = 25 В

Iк max = 0,1 А

h2 1 э = 20

Iк б 0 = 10 м к А

Транзистор VT 4

Максимальный ток коллектора :

Iк max = 5 [pic] 10-3 А

( 1 , ст. 329 )

Максимальное напряжение коллектор – эмиттер :

Uк э max = Uвых. + [pic]Uвых. – UV D 1

( 1 , ст. 329 )

Uк э max = 5 + 1 – 3 = 3 В

Предельная рассеиваемая мощность коллектора :

Рк max = Iк max [pic] Uк э max

Рк max = 5 [pic] 10-3 [pic] 3 = 1,5

[pic] 10-2 Вт

По результатам расчётов выбираем из справочника транзистор VT 2.

Расчётным параметрам удовлетворяет транзистор КТ 315 Ж с параметрами :

Рк max = 100 мВт

Uк э max = 15 В

Iк max = 5 [pic] 10-2 А

h2 1 э = 30

Выбираем стабилитрон VD 1.

Определяем напряжение стабилизации стабилитрона :

Uст. = Uвых. - [pic]Uвых. – 2

( 1 , ст. 329 )

Uст. = 5 – 1 – 2 = 3 В

По расчитанному напряжению стабилизации выбираем в справочнике

стабилитрон наиболее подходящий по параметрам

КС 133 А с параметрами :

Uст. ном. = 3,3 В

Iст. ном. = 0,03 А

Рассчитываем номиналы сопротивлений :

R1 = [pic] кОм

( 1 , ст. 329 )

R1 = [pic] = 0,0225 кОм = 22,5 Ом

Выбираем значение R1 ближайшее из стандартного ряда R1 =24 Ом

R2 = [pic] ( 1

, ст. 329 )

R2 = [pic] = 175 Ом

Выбираем ближайшее значение из стандартного ряда и принимаем R2 = 180 Ом.

R3 + R4 + R5 = [pic]Rдел.

( 1 , ст. 329 )

[pic]Rдел. = [pic]

( 1 , ст. 329 )

[pic]Rдел. = [pic] = 833 Ом

R4 = [pic] ( 1 , ст. 329

)

R4 = [pic] 146 Ом

Выбираем номинал сопротивления из стандартного ряда :

R4 = 150 Ом

R5 = [pic]

( 1 , ст. 329 )

R5 = [pic] = 458 Ом

Принимаем для R5 ближайшее значение из стандартного ряда

R5 = 470 Ом

R3 =[pic]Rдел. - R4 - R5

( 1 , ст. 329 )

R3 = 833 – 150 – 470 = 213 Ом

Принимаем значение R3 ближайшее из стандартного ряда

R3 = 200 Ом

R6 = [pic]

( 1 , ст. 329 )

R6 = [pic] = 71 Ом

Из стандартного ряда принимаем :

R6 = 73 Ом

R7 = [pic]

( 1 , ст. 329 )

Выбираем значение R7 ближайшее из стандартного ряда :

R7 = 510 Ом

Определяем рассеиваемую мощность на сопротивлениях :

P = [pic]

P1 = [pic]

P1 = [pic] = 1,4 Вт

P2 = [pic]

P2 = [pic] = 0,166 Вт

Р3 = Iдел.2 [pic] R3

Iдел. = [pic]

Iдел. = [pic] = 0,009 А

Р3 = 0,0092 [pic] 200 = 0,087 Вт

Р4 = Iдел.2 [pic] R4

Р4 = 0,0092 [pic] 150 = 0,073 Вт

Р5 = Iдел.2 [pic] R5

Р5 = 0,0092 [pic] 470 = 0,1 Вт

Р6 = [pic]

Р6 = [pic] = 0,34 Вт

Р7 = Iк б 0 2 [pic] R7

Р7 = 0,012 [pic] 510 = 0,051 Вт

Мощность сопротивлений выбираем из стандартного ряда с номиналом большим

, чем расчитанная рассеиваемая мощность.

R1 = 2 Вт

R6 = 0,5 Вт

R2 = 0,125 Вт

R3 = 0,125 Вт

R4 = 0,125 Вт

R5 = 0,125 Вт

R7 = 0,125 Вт

По результатам вышеприведённых расчётов записываем параметры схемы

стабилизатора.

VT 1 – КТ 805 Б

VT 2 – КТ 603 А

VT 3 – КТ 315 А

VT 4– КТ 315 Ж

VD 1 – КС 133 А

VD 2 – КД 202 Г

VD 3 – КД 202 Г

VD 4 – КД 202 Г

VD 5 – КД 202 Г

С 1 – 1000 мкФ ; 25 В

R 1 – 24 Ом ; 2Вт

R 2 – 180 Ом ; 0,125 Вт

R 3 – 200 Ом ; 0,125 Вт

R 4 – 150 Ом ; 0,125 Вт – переменный резистор.

R 5 – 470 Ом ; 0,125 Вт

R 6 – 73 Ом ; 0,5 Вт

R 7 – 510 Ом ; 0,125 Вт

Описание работы стабилизированного источника питания 5 В.

Источник питания функционально состоит из понижающего трансформатора ,

выпрямителя и стабилизатора.

Переменное напряжение и вторичной обмотки трансформатора Тр 1 поступает

на выпрямитель VD2 [pic] VD5. Выпрямитель выполнен на мостовой схеме ,

данная схема выпрямления из всех вариантов двухполупериодных выпрямителей

обладает наилучшими технико – экономическими показателями. После

выпрямления напряжения сглаживается конденсатор С1. Далее напряжение

порядка 7 [pic] 9 В поступает на стабилизатор , который автоматически

поддерживает постоянство напряжения на нагрузке с заданной степенью

точности. В нашем случае применён транзисторный стабилизатор напряжения

компенсационного типа.

Стабилизатор состоит из регулирующего элемента ( VT 1 [pic] VT 3 ). Схемы

сравнения ( VT 4 ) , источника опорного напряжения ( VD 1 , R 2 ) ,

делителя напряжения ( R 3 [pic] R 5 ) и резисторов ( R 6 , R 7 ) ,

обеспечивающих режим транзисторов ( VT 2 , VT 3 ). Предусмотрена

возможность регулировки выходного напряжения , для этого в цепь делителя

включён переменный резистор R 4.

Работа стабилизатора : схема свравнения выполнена на транзисторе VT 4.

Стабилитрон VD 1 фиксирует потенциал эмиттера VT 4. Потенциал базы зависит

от тока с протекающего через R 3, R4, R 5. С помощью переменного

резистора R 4 выставляем точно , нужное напряжение +5 В. Если напряжение на

нагрузке , например увеличилось , то это будет означать то , что ток через

R 3 , R 4 , R 5 тоже увеличивается.

Следовательно , потенциал базы транзистора VT 4 станет более

положительным по отношению к эмиттеру , чем был раньше. Поэтому транзистор

VT 4 приоткроется , потенциал базы транзистора VT 3 уменьшится.

Следовательно , транзистор VT 3 прикроется и соответственно прикроются

транзисторы VT 2 и VT 1. В результате напряжение на эмиттере транзистора VT

1 уменьшится , а напряжение на нагрузке останится неизменным. Аналогично

стабилизатор будет работать и при уменьшении напряжения на нагрузке.

4.5 АЛГОРИТМ СИСТЕМЫ УПРАВЛЕНИЯ АВТОМАТИЧЕСКОЙ ЛИНИЕЙ ГАЛЬВАНИРОВАНИЯ

Алгоритм программы работы системы управления автоматической линии

гальванирования построен на основе требования опроса датчиков положения ,

расположенных на пути следования автооператора и в зависимости от их

состояния выдачи соответствующей команды.

Алгоритм работы системы управления автоматической линии гальванирования

приведён на чертеже.

Данный алгоритм в режиме отработки цикла осуществляет опрос состояния

датчиков положения автооператора.

При срабатывании соответствующего датчика алгоритм осуществляет подачу

соответствующей команды на выполнение соответствующей технологической

операции , после окончания которой продолжается отработка цикла , пока не

закончится время работы линии или не закончится технологический процесс

предварительной обработки деталей. В этом случае алгоритм осуществляет

переход к началу технологического процесса.

5.9. ОРГАНИЗАЦИОННАЯ ЧАСТЬ.

Системы управления автоматической гальванической линией с применением

управляющих вычислительных машин.

Системы управления автоматической гальванической линией с применением

управляющих вычислительных машин являются последним достижением в области

систем управления автоматической гальванической линией.

Такие системы предназначены как для решения всех задач управления ,

выполняемых обычными средствами управления , так и для решения

оптимизационных задач , а также задач , связанных с выполнением расчётов и

логических операций.

Применение управляющих вычислительных машин позволяет решить вопрос об

автоматизации гальванических цехов с мелкосерийным характером производства

при большой номенклатуре партий деталей.

Особенно большое развитие эти системы должны получить при создании

гибкого автоматизированного производства гальванопокрытий ( ГАП – Г ).

Требования к системе управления гальванопокрытий , разработанные

комиссией по автоматизации гальванического производства , в рамках общих

требований к оборудованию единой государственной системы гибкого

автоматизированного производства гальванопокрытий ЕГС ГАП – Г

предусматриваются все контролирующие и управляющие функции в ГАП – Г

выполнять пятью подсистемами управления : подготовкой производства ;

транспортно – складским комплексом ; нанесением покрытий ; очистными

сооружениями ; оперативного управления цехом.

Цепочка технологических операций , разбивка их по подсистемам управления

и связи между подсистемами показаны на рисунке 1. Система управления

выполняется по принципу децентрализованной распределённой системы и имеет

три уровня управления.

Рисунок 1. Система управления гибким автоматизированным

Страницы: 1, 2, 3, 4, 5, 6


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.