![]() |
|
|
Теория организации и системный анализуравнений этих законов даст нам математическую модель хотя бы отдельных элементов или подсистем. Но и в этих, редких, случаях возникают проблемы не только в плане сложности урав-нений, невозможности их аналитического решения (расчета по формулам). Дело в том, что в природе трудно обнаружить примеры “чистого” проявления ее отдельных законов — чаще всего сопутствующие явление факторы “смазывают” теоретическую картину. Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря — сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись. В системах экономических, представляющих для вас основной интерес, приходится прибегать большей частью к математическому моделированию, правда в специфическом виде — с использованием не только количественных, но и качественных, а также логических показателей. Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования эко-номики; прогностические; равновесия и ряд других. Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности. Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне. Иными словами — в реальных системах вполне возможно логическое обоснование моделей элементов. Эти модели мы как раз и стремимся строить минимально достаточными, простыми настолько, насколько это возможно без потери сущности процессов. Но логически осмыслить взаимодействие десятков, сотен элементов человек уже не в состоянии. И именно здесь может “сработать” известное в математике следствие из знаменитой теоремы Гёделя — в сложной системе, полностью изолированной от внешнего мира, могут существовать истины, положения, выводы вполне “допустимые” с позиций самой системы, но не имеющие никакого смысла вне этой системы. То есть, можно построить логически безупречную модель реальной системы с использованием моделей элементов и производить анализ такой модели. Выводы этого анализа будут справедливы для каждого элемента, но ведь система — это не простая сумма элементов, и ее свойства не просто сумма свойств элементов. Отсюда следует вывод — без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе — при взгляде на нее со стороны внешнего мира. Для пояснения вернемся к рассмотренному ранее примеру. В нем почти все элементы были построены на вполне оправданных логических постулатах (допущениях) типа: если студент Иванов получил оценку “знает” по некоторому предмету, и посетил все занятия по этому предмету, и управление его обучением было на уровне “Да” — то вероятность получения им оценки “знает” будет выше, чем при отсутствии хотя бы одного из этих условий. Но как на основании системного анализа такой модели ответить на простейший вопрос; каков вклад (хотя бы по шкале “больше-меньше”) каждой из подсистем в полученные фактические результаты сессии? А если есть числовые описания этих вкладов, то каково доверие к ним? Ведь управляющие воздействия на систему обучения часто можно производить только через семестр или год. Здесь приходит на помощь особый способ моделирования — метод статистических испытаний (Монте Карло). Суть этого метода проста — имитируется достаточно долгая “жизнь” модели, несколько сотен семестров для нашего примера. При этом моделируются и регистрируются случайно меняющиеся внешние (входные) воздействия на систему. Для каждой из ситуации по уравнениям модели просчитываются выходные (системные) показатели. Затем производится обратный расчет — по заданным выходным показателям производится расчет входных. Конечно, никаких совпадений мы не должны ожидать — каждый элемент системы при входе “Да” вовсе не обязательно будет “Да” на выходе. Но существующие современные методы математической статистики позволяют ответить на вопрос — а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для ответа на поставленные выше вопросы. 7 Процессы принятия управляющих решений Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. Надо понять, что эти воздействия не всегда заключаются в изменениях уровня некоторых входных параметров — это могут быть варианты структурных перестроек системы. Так вот — все это есть. И что же дальше? Пора и управлять, управлять с единой целью — повышения эффективности функционирования системы (однокритериальная задача) или с одновременным достижением нескольких целей (многокритериальная задача). Естественно, мы ставим вопрос: “А что будет, если …?” и ожидаем ответа. Но здесь не следует ожидать чуда, нельзя надеяться на однозначный ответ. Если к примеру, мы интересуемся вопросом — “к чему приведет увеличение на 20% закупок цемента?”, то мы должны не удивляться, получив ответ — “Это приведет к увеличению рентабельности производства кирпича на величину, которая с вероятностью 95% не будет ниже 6% и не будет выше 14%”. И это еще очень содержательный ответ, могут быть и более “расплывчатые”! Здесь уместно в последний раз обратиться к примеру с анализом системы обучения и ответить на возможный вопрос — а как же были использованы выводы системного анализа обучения в КГРИ? Ответ одного из соавторов системного анализа, пишущего эти строки, очень краткий — никак. Можно теперь открыть еще одну (не последнюю) тайну ТССА. Дело в том, что судьбу разработок по управлению большими системами должно решать только ЛПР, и только этот человек (или коллективный орган) решает вопрос дальнейшей судьбы итогов системного анализа. Важно отметить, что это правило никак не связано ни с “важностью” конкретной отрасли промышленности, торговли или образования, ни с политическими обстоятельствами, ни с государственным строем. Все намного проще — мудрость отцов-основателей ТССА проявилась, прежде всего, в том, что неполнота достоверности выводов системного анализа была ими заранее оговорена. Поэтому те, кто ведет системный анализ, не должны претендовать на обязательное использование своих разработок; факты отказа от их использования не есть показатель непригодности этих разработок. С другой стороны, те, кто принимают решения, должны столь же четко понимать, что расплывчатость выводов ТССА есть неизбежность, она может быть обусловлена не промахами анализа, а самой природой или ошибкой постановки задачи, например, попытки управлять такой гигантской системой, как экономика бывшего СССР. 2 Основные понятия математической статистики 1 Случайные события и величины, их основные характеристики Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть: ( продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания; ( деньги, с единственным способом описания — суммой; ( информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин. Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем — количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее — а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный — наша цель управлять, а по образному выражению “управлять — значит предвидеть”. Итак, без предварительной информации, знаний о количественных показателях в системе нам не обойтись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским (дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина — с тем или иным количеством возможных значений (в зависимости от единицы измерения). Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному. Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений. Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения. К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1[pic]называют достоверными, а с вероятностью 0 — невозможными. Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1. Если мы наблюдаем за сложным событием — например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости. Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1. Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины. Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные: Таблица 2.1 |Грани |1 |2 |3 |4 |5 |6 |Итого | |Наблюден|140 |80 |200 |400 |100 |80 | 1000 | |ия | | | | | | | | Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой. Рис. 2.1 [pic] Какую же информацию несет такая табличка или соответствующая ей гистограмма? Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по [pic] на любой из исходов. С другой стороны — очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: — а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани? Нетрудно сосчитать: 1(0.140+2(0.080+3(0.200+4(0.400+5(0.100+6(0.080= 3.48 То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое. Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как Mx = ( Xi ( P(Xi); {2 - 1} где P(Xi) — вероятность того, что X примет свое i-е очередное значение. Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной)— это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений. Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5. Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений? Для этой цели используется специальная величина — мера рассеяния — так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину [pic] {2 - 2} принято называть дисперсией случайной величины X. Вычисление дисперсии намного упрощается, если воспользоваться выражением [pic] {2 - 3} т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения. Выполним такое вычисление для случайной величины с распределением рис. 1. Таблица 2.2 |Грани(X) |1 | | | | | |Итого | | | |2 |3 |4 |5 |6 | | | X2 | 1 | | 9| | 25| | | | | |4 | |16 | |36 | | | Pi | |0.080 | | | 0.100| 0.080| 1.00 | | |0.140 | |0.200 |0.400 | | | | |Pi(X2(1000 | 140 | 320 | 1800| 6400 | 2500| 2880 |14040 | Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930. Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения — т. н. среднеквадратичное отклонение или отклонение от среднего значения: [pic] {2 - 4} составляющее в нашем случае [pic] = 1.389. Много это или мало? Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения — (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917. Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении. Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания: Vx = SX/MX . {2 - 5} В нашем примере эта величина составит 1.389/3.48=0.399. Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации. В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла — как проверить, что вес товара составляет точно 242 кг - не больше и не меньше? Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне. 2 Взаимосвязи случайных событий Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет P(X) = 1 - P(X). {2 - 6} Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) — это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, — совмещения событий. Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос — это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними? Попробуем разобраться в этом вопросе на основании здравого смысла. Оценим вначале вероятность одновременного наступления двух независимых событий. Элементарные рассуждения приведут нас к выводу: если события независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное их наступление имеет вероятность всего лишь 0.8 ( 0.2 = 0.16 или 16% . Итак — вероятность наступления двух независимых событий определяется произведением их вероятностей: P(XY) = P(X) [pic]P(Y). {2 - 7} Перейдем теперь к событиям зависимым. Будем называть вероятность события X при условии, что событие Y уже произошло условной вероятностью P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же простые рассуждения приводят к так называемой формуле Байеса P(X/Y)[pic]P(Y) = P(Y/X)[pic]P(X) {2 - 8} где слева и справа записано одно и то же — вероятности одновременного наступления двух "зависимых" или коррелированных событий. Дополним эту формулу общим выражением безусловной вероятности события X: P(X) = P(X/Y)[pic]P(Y) + P(X/Y)[pic]P(Y), {2 - 9} означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло (Y) — третьего не дано! Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противо-действия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события P(X/Y) [pic][pic]. {2 - 10} Прежде всего, еще раз отметим взаимную связь событий X и Y — если одно не зависит от другого, то данная формула обращается в тривиальное тождество. Кстати, это обстоятельство используется при решении задач оценки тесноты связей — корреляционном анализе. Если же взаимосвязь событий имеет место, то формула Байеса позволяет вести управление путем оценки вероятности достижения некоторой цели на основе наблюдений над процессом функционирования системы — путем перерасчета вариантов стратегий с учетом изменившихся представлений, т. е. новых значений вероятностей. Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе — и на первых шагах эти вероятности будут взяты "из головы" или в лучшем случае из опыта управления другими системами. Но по мере "жизни" системы нельзя упускать из виду возможность "коррекции" управления - использования всего накапливаемого опыта. 3 Схемы случайных событий и законы распределений случайных величин Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ. Эти распределения иногда называют "теоретическими", поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п. |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |