реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Методы химического анализа

(1.7.5)

Метод предполагает строгое соблюдение соотношения

I = А · С в области

анализируемых концентраций.

1.7.2 Косвенные измерения

Косвенные измерения применяются при титровании анализируемой пробы кондуктометрическим, потенциометрическим и некоторыми другими методами.

В этих методах в процессе титрования измеряется интенсивность аналитического сигнала - I и строится кривая титрования в координатах I - V, где V - объем добавляемого титранта в мл.

По кривой титрования находится точка эквивалентности и проводится расчет, по соответствующим аналитическим выражениям 1.7.6.

Q в-ва = Т г/мл · Vмл(экв) (1.7.6)

Виды кривых титрования весьма многообразны, они зависят от метода титрования (кондуктометрическое, потенциометрическое, фотометрическое и т.д.), а также от интенсивности аналитического сигнала, зависящего от отдельных влияющих факторов.

2. Автоматизация аналитического контроля продукции химико-технологических производств

Автоматизированный аналитический контроль является обязательным элементом управления химико-технологическими процессами автоматизированных производств различной продукции. Он выполняется проведением определённой совокупности операций, контролирующих протекание технологических процессов непрерывного получения продукции заданного качества

Контроль представляет собой процесс измерения параметров продукции, объединённый с принятием решения на применение предупреждающих и корректирующих действий, рис. 2.1.,

Рис 2.1. Место автоматизированного аналитического контроля в технологической системе производства продукции

Целью проведения контроля является оперативное получение объективной информации о состоянии технологической среды в различных точках технологической системы производства. Оперативность достигается использованием автоматических анализаторов (аналитических приборов), позволяющих измерять параметры технологической среды, которые характеризуют её элементарный, молекулярный или фазовый состав.

Автоматические анализаторы являются устройствами, измеряющими конкретный (заданный) физический параметр выбранного компонента технологической среды. По изменению параметра оценивается состояние протекающего химико-технологического процесса, прогнозируется качество выпускаемой продукции, и производятся (автоматически или операторами) соответствующие корректирующие и предупреждающие действия.

2.1 Измеряемые параметры и их использование для анализа качества продукции

Под параметрами продукции понимаются показатели, характеризующие состав контролируемой технологической среды и свойства, входящих в неё веществ.

Состав технологической среды зависит от количества, входящих в неё отдельных веществ (компонентов) и может быть выражен числом молей или массой компонентов в граммах или других единицах массы. Однако в практике аналитического контроля состав выражается через концентрацию компонентов (С = м / М), которая учитывает взаимосвязь между массой отдельного компонента в пробе (м) и общей массой пробы (М). Наиболее распространёнными единицами измерения концентрации являются:

для жидкостей-мг/см3, г/см3, % по массе или объёму;

для газов-мг/м3, г/м3, % по объёму.

Свойства веществ характеризуются численными значениями физических или физико-химических величин (плотности, вязкости, электропроводности и др.), которые могут быть использованы для измерения.

Практическое выполнение аналитических измерений основано на использовании взаимосвязи между составом анализируемого вещества (концентрациями его компонен тов) и величинами, характеризующими его физические и физико-химические параметры, выражение 2.1.

y = f ( С1, С2,…,Сi,…,Сп ), (2.1)

где: y-измеряемый параметр анализируемого вещества;

С-концентрация компонентов;

п -общее число компонентов в контролируемой продукции.

2.2 Технологическая среда химико-технологических процессов и её свойства

К технологической среде химико-технологических процессов относятся, находящиеся в технологических аппаратах, продукты (В отдельных литературных источниках технологическую среду называют объектами аналитического контроля и обозначают ОАК). Они отличаются составом и свойствами перерабатываемых и производимых веществ, которые могут представлять собой гомогенную или гетерогенную среду, состоящую из нескольких фаз (как правило, от одной до трёх). В гомогенной среде измеряется содержание одного или нескольких компонентов, а в гетерогенной среде - содержание одного или нескольких компонентов в одной из фаз.

В соответствии с определяемым компонентом выбирается измеряемый физический параметр контролируемой технологической среды, его выбор зависит от двух факторов:

наличия соответствующего оборудования, которое может быть применено для обеспечения аналитического контроля производства;

наличия достоверных данных о физических свойствах контролируемой и анализируемой технологической среды. Например, для измерения концентрации водорода в газовых смесях используются термокондуктометры, так как водород обладает значительно большей теплопроводностью, чем другие газы. Для измерения концентрации кислорода в газовых смесях применяют термомагнитные газоанализаторы, так как молекулы кислорода обладают ярко выраженными парамагнитными свойствами.

Подлежащая аналитическому контролю технологическая среда, как правило, представляет собой жидкости, газы, суспензии, эмульсии, дымы, туманы или их смеси. При проведении контроля они в большинстве случаев подвергаются - фильтрации, нагреванию или охлаждению и другим преобразованиям. Это происходит при движении технологической среды в технической системе, представляющей собой транспортную коммуникацию от точки отбора пробы до места установки датчиков контроля. Тем самым обеспечивается перевод её (анализируемой среды) в состояние, удобное для контроля с помощью анализаторов.

В ходе контроля из-за повышения температуры, давления или роста концентрации веществ в технологических процессах могут происходить изменения в фазовом состоянии технологической среды. Подобное состояние должно прогнозироваться при разработке технологий контроля, так как результаты анализа будут необъективными.

В производственной практике наиболее встречающимися технологическими средами являются, рис.2.2:

однофазная газовая среда;

газовая среда, содержащая неустойчивые аэрозоли;

газовая среда, содержащая неустойчивые и устойчивые (устойчивые и неустойчивые) аэрозоли;

однофазная (чистая) жидкая среда;

суспензии (жидкая среда, содержащая твёрдые частицы);

эмульсии (жидкая среда, содержащая частицы органических или элементоорганических веществ).

Рис. 2.2. Классификация фазовых состояний технологической среды

Однофазная газовая среда характеризуется отсутствием аэрозоля и не изменяет агрегатного состояния при изменении температуры и давления при проведении аналитического контроля.

Газовая среда с неустойчивыми или устойчивыми и неустойчивыми аэрозолями остаётся однофазной при изменении температуры и давления в пределах, требуемых для проведения анализа. Например, такими средами являются газы, обезвоживаемые твёрдыми или труднолетучими осушителями (серной кислотой).

Газовая среда, содержащая устойчивые и неустойчивые аэрозоли (пар, туман, дымы) при изменении температуры и давления изменяет своё агрегатное состояние и частично конденсируется, Например, автоматизированная система контроля паров на различных уровнях ректификационной колонки отличается многозвенностью подсистем, обеспечивающих выделение мешающих компонентов из смеси механическими или физико-химическими методами.

Чистая жидкая среда не содержит диспергированных частиц (жидких, твёрдых, газообразных). При транспортировке через автоматизированную систему её агрегатное состояние и свойства не изменяются. Например, к такому типу контролируемых жидкостей относится обессоленная вода (очищенная от солей жёсткости) используемая в котлах котельных для получения водяного пара.

К суспензиям относится жидкая среда, содержащая твёрдые частицы. Жидкая фаза суспензии не изменяет своего агрегатного состояния при изменении температуры и давления в заданных пределах.

Различаются суспензии с неустойчивой или сочетающей в себе неустойчивую и устойчивую твёрдые фазы. Твёрдые частицы неустойчивой фазы осаждаются под действием гравитационных сил или фильтруются, например, производство оксохлорида меди в результате взаимодействия водно-меловой суспензии с раствором хлорида меди. Примером суспензий с неустойчивой и устойчивой твёрдой фазой служат сконденсированные продукты высокотемпературного органического синтеза, в которых содержатся твёрдые частицы углерода (сажи). Они образуются в результате частичного разложения реагентов при высокой температуре, и для их удаления требуется сверхтонкая фильтрация производимого продукта.

К эмульсиям относится жидкая среда, содержащая как крупные, так и мелкие частицы диспергированных органических или элементоорганических веществ. Примерами эмульсий являются продукты полимеризации в растворах органических и элементоорганических вещ(полистирол, поливинилхлорид и др.).

Анализируемой средой эмульсий является как сплошная, так и дисперсная фаза, которые могут изменять агрегатное состояние при изменении температуры и давления. Кроме того, дисперсная фаза жидкой среды при транспортировке её в автоматизированной системе подготовки к анализу может коагулироваться. Поэтому для анализа дисперсные фазы разделяются и специально готовятся (термически обрабатываются и дозируются).

Жидкая среда может содержать растворённый газ, концентрация которого изменяется при изменении температуры и давления, а концентрация твёрдой и жидкой фазы остаётся постоянной. Примерами таких сред являются продукты хлорирования водно-органических суспензий. Сплошной фазой в них является водный раствор, в котором с высокой точностью поддерживается заданное значение рН.

В технологической среде, представляющей собой насыщенный раствор, даже при незначительном изменении температуры могут образовываться диспергированные частицы. Для проведения анализа такая среда подвергается фильтрации, термической обработке, при необходимости разбавлению, дозировке.

2.3 Автоматизированные системы аналитического контроля

Автоматизированные системы аналитического контроля продукции обычно монтируются как в специально оборудованных производственных помещениях (анализаторных), так и в непосредственной близости от аппаратов, в которых протекают технологические процессы производства продукции. Они представляют собой совокупность, взаимодействующих между собой технологической среды и технических устройств отбора, подготовки и анализа пробы, а также обработки и отображения полученных данных.

Взаимодействие между составляющими автоматизированной системы осуществляется в соответствии с разработанной методикой.

2.3.1 Методика автоматизированного аналитического контроля

Методика автоматизированного контроля химико-технологических процессов, как правило, разрабатывается на стадии проектирования системы контроля конкретного производства. При её разработке применяются типовые методы анализа веществ, а в отдельных случаях разрабатываются новые. Практика организации аналитического контроля не исключает возможности применения методик, используемых на предприятиях, выпускающих одинаковую или близкую по составу продукцию. Однако методики сторонних предприятий должны быть адаптированы к условиям конкретного производства.

Как документ методика оформляется в виде пояснительной записки к карте аналитического контроля. В ней подробно описываются порядок отбора пробы, условия её транспортирования, подготовки, измерения и отображения параметров контролируемой среды, а также организация сброса проконтролированного продукта в технологическую систему. Перечисляются операции, подлежащие выполнению с указанием используемого оборудования и химических реактивов, а также приводится математический аппарат расчета прогнозируемых систематических и случайных погрешностей.

Для обеспечения качества и единства полученных результатов анализа в методике обосновывается периодичность поверки автоматизированной системы аналитического контроля. Кроме того, излагаются функции ведомственной метрологической службы, как во время поверки, так и в межповерочный период.

Особое внимание в методике уделяется параметрам объектов аналитического контроля:

составу и свойствам контролируемых компонентов или технологической среды в целом;

мешающим компонентам, изменению концентрации и фазового состояния технологической среды;

внутренним и внешним факторам, оказывающим влияние на процесс контроля.

С точки зрения энергетического подхода проба может характеризоваться двумя группами параметров:

1) внутренними - определяемыми физическими параметрами, которые функционально связаны с движением молекул ,атомов, ионов, электронов, ядер, функциональных и молекулярных групп, а в случае неустановившегося процесса, временем;

2) внешним - измеряемыми физическими параметрами, зависящими от расположения внешних (по отношению к пробе) тел и характеризующими параметры пространства, времени, силовых полей, излучения.

Внутренние и внешние параметры пробы связаны между собой, однако определяемые параметры непосредственно связаны только с составом пробы.

Можно отметить, что преобразования и измерения параметров пробы связаны с воздействием на неё различных полей или веществ. В зависимости от характера данного воздействия различаются следующие преобразования пробы:

1. Химические. Если воздействие на пробу приводит к изменению состава системы пробы - источник воздействия;

2. Физико-химические. Если воздействие на пробу изменяет состав системы пробы - источник воздействия, а также вызывает пространственное или пространственно-временное разделение 4компонентов пробы;

3. Физические. Если воздействие на пробу приводит к изменению её свойств при неизменности состава;

4. Комбинированные, состоящие из различных вариантов рассмотренных воздействий.

Любые изменения в процессах (увеличение или уменьшение числа фаз, разделение их, разбавление среды и др.) в методике оговариваются специально, и каждому из них даётся точная количественная оценка. Поэтому при разработке методики контроля особые требования предъявляются к реализуемым методам измерения параметров веществ. Они во всём интервале изменения концентрации определяемого компонента должны обладать максимально возможной параметрической чувствительностью (ПЧ) и наиболее полно соответствовать зависимости 2.2.

n

ПЧ = П с ? ? П с > max, (2.2)

K=1

где: -интервал изменения концентрации -го (определяемого) и -го (неопределяемого) компонента;

-значение выбранного параметра, относительно которого измеряется соответственно концентрация -го и -го компонента многокомпонентной смеси.

2.3.2Составные части автоматизированной системы аналитического контроля

Аналитический измерительный процесс (рис.2.3) в автоматизированных системах контроля условно может быть разделён на четыре этапа:

отбора пробы на анализ;

транспортирование пробы к анализатору;

подготовку пробы к анализу;

непосредственное проведение аналитических измерений и обработки измерительной информации.

На этапе отбора пробы для анализа наиважнейшее значение придаётся месту монтажа пробоотборного устройства в технологической системе. Оно должно обеспечивать:

постоянство пропускной способности отбираемой пробы технологической среды;

соответствие пробы основной массе контролируемой технологической среды по физико-химическим свойствам.

От выбора места монтажа на технологической линии пробоотборного устройства зависят условия отбора пробы на анализ. Они оказывают влияние на стабильность функционирования узлов подготовки пробы к анализу и работу анализатора и, как следствие, повлияет на достоверность результатов измерений параметров пробы.

Этапы транспортирования и подготовки могут быть разделены только условно.

Подготовка пробы к анализу начинается в транспортной коммуникации от пробоотборного устройства до места установки датчика для измерения параметров. Она состоит обычно из ряда элементов, каждый из которых обеспечивает определённый вид преобразования технологической среды - фильтрацию, нагревание или охлаждение, разделение фаз и др. Таким образом, проба переводится в состояние обеспечивающее проведение контроля с помощью автоматического анализатора.

Как показывает опыт, обычно контролируемая технологическая среда подвергается таким преобразованиям, в результате которых среда анализируемой пробы становится

Внешние влияющие факторы

Сброс (утилизация)

Рис. 2.3. Операционная схема автоматизированного аналитического контроля

гомогенной и соответствует требованиям, определённым документацией применяемого анализатора.

При транспортировании и подготовке пробы к анализу продукт может изменить фазовое состояние из-за изменения температуры. Состав пробы может измениться вследствие сорбции или хемосорбции на внутренних поверхностях транспортных коммуникаций, а также продолжающихся химических превращений и других процессов. Величина вносимой погрешности на этом этапе, может оказаться значительной и многократно превосходить погрешность анализа, нормированную для приборов. Такие погрешности не всегда удаётся предотвратить, однако их можно учесть, если они остаются неизменными во времени (систематическими).

Пробы некоторых технологических сред не подвергаются преобразованию, и аналитический контроль проводится без дополнительной подготовки. В таких случаях аналитический датчик монтируется непосредственно в технологическом аппарате или технологическом трубопроводе. Для обеспечения надёжного контроля в таких условиях должна быть гарантирована стабильная работоспособность чувствительного элемента анализатора.

Автоматизированная подготовка однофазной газовой среды наиболее простая и заключается в фильтрации её для удаления продуктов эрозии технологических трубопроводов и термостатирования. В отдельных случаях узлы подготовки могут вообще отсутствовать.

Автоматизированная подготовка газовой среды с неустойчивыми или устойчивыми и неустойчивыми аэрозолями к контролю потребует проведения предварительной очистки от аэрозолей, термической обработки и стабилизации расхода.

Чистая жидкая среда не содержит диспергированных частиц (жидких, твёрдых, газообразных) и не требует специальной подготовки для проведения анализа.

При подготовке суспензий к анализу подлежат удалению разложившиеся реагенты проведением сверхтонкой

фильтрацией пробы технологической среды.

Для анализа эмульсии её дисперсные фазы разделяются и специально готовятся - подогреваются и дозируются.

Автоматизированная подготовка к анализу жидкой среды содержащей растворённый газ включает фильтрацию водного раствора и стабилизацию расхода выделенного продукта через автоматический анализатор.

Автоматизированная подготовка насыщенного раствора технологической среды к анализу включает выполнение следующих операций: фильтрацию, термическую обработку, разбавление (при необходимости), дозировку.

Непосредственное измерение параметров пробы производится автоматическими анализаторами. В соответствии с определяемым компонентом выбирается измеряемый физический параметр технологической среды, изменение которого должно наиболее полно характеризовать изменение концентрации определяемого компонента в этой среде. Регистрирует изменение физического параметра чувствительный элемент анализатора. Получение достоверных результатов анализа и снижение погрешностей достигается обеспечением нормального функционирования датчика, что является прямой обязанностью обслуживающего персонала.

2.3.3 Чувствительный элемент датчика автоматического анализатора

Чувствительный элемент является составной частью датчика применяемого анализатора и наиболее важной частью автоматизированной системы контроля технологической среды. Он представляет собой устройство, способное генерировать информацию, полученную от его физического или физико-химического взаимодействия с технологической средой.

К основным требованиям, предъявляемым к чувствительному элементу, относятся:

высокая параметрическая чувствительность к изменению концентрации определяемого компонента;

избирательность, быстродействие, стабильность работоспособности и коррозионная стойкость к анализируемой среде;

доступность и простота регенерации;

надёжность в работе;

удобство обслуживания.

Взаимодействие чувствительного элемента с анализируемой средой может осуществляться прямым контактом или через перегородки.

Прямой контакт чувствительного элемента с технологической средой используется в электрохимических, тепловых, радиоизотопных, газодинамических и других анализаторах. Датчик этих анализаторов монтируется непосредственно в местах автоматизированного контроля среды, которая воздействует непосредственно на чувствительный элемент.

Перегородки применяются для пропускания только того материального потока анализируемой технологической среды, который должен оказывать воздействие на чувствительный элемент. Например, к таким потоком относятся:

поток воздуха эквивалентный давлению анализируемой среды на эластичную мембрану в анализаторах плотности;

световой поток через оптически прозрачные перегородки в оптико- акустических анализаторах;

тепловой поток через защитную стеклянную оболочку в термокондуктометрических анализаторах химически агрессивных сред.

Могут применяться перегородки при контроле технологической среды, включающей несколько фаз. В этом случае возникает необходимость выделения фазы из потока технологической среды, которая характеризует её параметры.

Независимо от того, как будет взаимодействовать чувствительный элемент с анализируемой средой, её физическое состояние должно оставаться постоянным. Однако для предотвращения появления нарушений в его параметрической чувствительности необходимо исключить влияние физических параметров окружающей среды - температуры, давления, влажности воздуха, магнитных полей, производственных вибраций, статического электричества, шагового напряжения и др. Важнейшим условием полноценного его функционирования является поддержание в должном техническом состоянии коммуникаций с измерительным преобразователем и другой аппаратурой.

Обеспечение длительной эксплуатации чувствительного элемента в датчике анализатора и получение объективной информации о состоянии контролируемой технологической среды достигается обеспечением выполнения следующих требований:

1. Чувствительный элемент должен взаимодействовать только с представительной частью анализируемой среды;

2. Недопустима установка чувствительного элемента в застойной зоне контролируемой технологической среды;

3. Режим обтекания чувствительного элемента анализируемой средой, а также её температура и давление должны находиться в пределах определённых методикой контроля.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.