![]() |
|
|
Билеты по Курсу физики для гуманитариев СПБГУАПобъяснение системы Менделеева возможно только с опорой на Т. строения атома, т.е. на физическую Т.. В настоящее время в неорганической химии остались 2 раздела: физическая химия и квантовая химия. Сами названия этих разделов говорят о тесной связи с физикой. Другая ветвь химии - органическая химия, химия веществ, связаных с жизненными процессами. Одно время предполагали, что органические в-ва столь сложны, что их нельзя синтезировать. Однако, развитие физики и неорганической химии изменило ситуацию. В настоящее время научились синтезировать сложные органические соединения, необходимые в жизненых процессах. Главной задачей органической химии явл. анализ и синтез веществ, образующихся в биологических сист., живых организмах. Отсюда вытекает тесная связь химии и физики с другим разделом естествознания, с биологией. Изучение живых организмов позволяет увидеть множество чисто физических явлений: циркуляцию и гидродинамику протекания крови, давление в сосудах и т.д. Биология - очень широкое поле деят-ти для приложения физических и химических теорий. Например, как осущ- ется зрение, что происходит в глазе. Как квант света взаимодействует с сетчаткой. Однако, эти вопросы не осн. в биологии, не они лежат в сущности всего живого. Фундаментальные процесы, изучаемые в биологии лежат глубже, в понимании функционирования клеток, их биохимических циклов. В конечном итоге, в понимании того, что есть жизнь. Понятие жизни не удается свести только к хим или физ. процесам. Психология изучает отражение действит-ти в процессах деят-ти чела и животных. Эта наука лежит на грани ественых и общ- веных наук. Казалось бы, какая связь может быть у нее с физикой. Давайте рассмотрим пару примеров. Одной из ветвью психологии явл. физиология ощущений. Она расм. взаимосвязь между поведением чела и его ощущениями. Почему красный цвет вызывает тревожные ощущения, а зеленый наоборот. Недаром запрещающий цвет светофора - красный, а разрешающий - зеленый. Ответ может дать физика. Днем max излучения солнца приходится на зеленый цвет. День - самое безопасное время суток, и в процесе эволюции у живых организмов выработалась положительная реакция на зеленый цвет. В сумерках max излучения солнца сдвинут в красную область. Сумерки - самое опасное время суток, когда хищные животные выходят на охоту. Есcно, что в процесе эволюции выработалось отрицательная реакция на этот цвет. Другой пример из облти криминалистики, кот. условно также можно отнести к ветви психологии, поскольку она расм. поведения людей в сложных ситуациях, приводящих к криминальным случаям. Когда доктор Ватсон спросил, знает ли Шерлок Холмс о Т. Коперника и о строении солн. системы, Холмс ответил, что наверно знал, но постарался об этом забыть. Тем не менее, доктором Ватсоном было установлено, что Холмс обладает глубокими знаниями в облти химии и ряда разделов физики. Действительно, сейчас ни 1 криминалист не может обойтись без такого раздела физики, как механика, точнее ее прикладного раздела - баллистики, а также ряда других. В заключении этого раздела упомянем еще 1 момент, выявляющий связь физики с другими разделами естествознания. Все приборы, используемые в опытах и экспериментах созданы специалистами с техническим (т.е. физ.) образованием. Принцип действия этих приборов основан на физических законах. В конечном итоге, тестер для измерения напряжения или тока , томограф, получающий пространственную картину внутренних органов, микроанализатор, определяющий уровень загрязненности окружающей среды или потребляемой пищи, требуют от работающих определенных знаний. С 1ой стороны - это знание основных принципов работы прибора, с другой стороны - умение оценивать степень точности параметров, кот. измеряет данный прибор. 10. Детерминизм класич. механики. Под детерминизмом понимается философское учение об объективной закономерности, взаимосвязи и причинной обусловленности всех явлений мат. и духовного мира. Центральным ядром детерминизма явл. полож. о причинности. Идея детерминизма сост. в том, что все явл-я и события в мире не произвольны, а подчиняются объективным закономерностям, независимо от наших знаний о природе явлений. Всякое следствие имеет свою причину. детерминизм Лапласа(1749 - 1827). Согласно классическому механистическому детерминизму сущ-вует строго однозначная связь между физическими величинами, хар-еризующ. сост. системы в какой-то момент времени (координаты и импульсы) и значениями этих величин в люб. последующий или предыдущий моменты времени. Принцип механического детерминизма. If известны начальные координаты и скор. тел системы, а также законы взаимдейст. тел, то можно определить сост. системы в люб. последующий момент времени. Отметим, что для успешного практического решения подобных задач законы взаимдейст. тел нужно знать очень точно, либо нужно смириться с тем, что расчет будет адекватно описывать поведение системы лишь в ограниченном временном интервале. Связано это с тем, что неточности расчета имеют свойство накапливаться и искажать получающуюся картину, - чем дальше, тем больше. Кроме того нужно иметь ввиду, что для решения задачи о движении большого кол-ва взаимодействующих тел нужно задать очень больш кол-во начальных данных, законов взаимдейст. и решать очень громоздкую систему дифференциальных уравнений. С позиций сегодняшних знаний о природе можно утверждать, что механистический детерминизм Лапласа не работает в микромере, где процесы взаимдейст. частиц по своей природе явл. вероятностными. При столкновении 2х атомов 1 из них может возбудиться (перейти в возбужденное сост.), а может и остаться в основном, невозбужденном сост.. В последнем случае атомы будут сталкиваться как идеально упругие шары, в первом случае как неупругие шары. Результаты столкновения в этих случаях будут сильно различаться, а решить, как будет происходить взаимдействие, до того как оно произойдет, в принципе невозможно. В микромире могут одновремено протекать процесы, кот. абсолютно несовместимы в макромире. Когда описывается квантовая микросистема, предсказывается ее поведение в рамках вероятностного описания, но не дается однозначного ответа, как конкретно она будет себя вести. При этом всегда остаются в силе причинно-следственные связи. 11. РАБОТА, кинетическая эн-я.Энергия- наиболее общая количественная мера движения и взаимдейст. материи. Для изолированной системы эн-я остается пост., она может переходить из 1ой формы в друг., но ее кол-во остается неизменным. If сист. не изолирована, то эн-я может изменятся при одновременном изменении энергии окружающих тел на такую же величину или за счет энергии взаимдейст. тел внутри системы. При переходе системы из одного состояния в другое ее эн-я не зависит от того, каким путем произошел этот переход. Энергия системы в общем случае может переходить в друг. формы материи. Поскольку сущ-вует многообразие форм движения материи, сущ-вует и многообразие видов энергий: кинетическую, потенциальную и полн механическую энергию. Работа силы- мера действия силы, кот. зависит от численной величины силы и ее направл-я, от перемещения тчки приложения силы. If сила F постояна по величине и направл., а перемещение происходит вдоль прямой, то работа =а произведению силы на величину перемещения и косинус угла между направлением силы и перемещением. работа - величина скалярная. Единицей измерения Джоуль (Дж). В общем случае для вычисления работы под действием переменной силы на криволинейном участке траектории вводят элементарную работу dA. Считаем, что на бесконечно малом участке пути dr сила не меняется и элементарная работа dA опр-ся как: dA=F*dr*cos'альфа'=(F'вектор'dr'вектор') (11.2). Работа - величина аддитивная; работа силы на конечном участке пути (1)R(2) опр-ся как сумма элементарн. работ. Суммирование по бесконечно малым величинам dА есть операция интегрирования: A12='интеграл от 1 до 2'(F(вектор)dr(вектор)) (11.3), где интегрирование ведется вдоль траектории. В векторном анализе такой интеграл наз. циркуляцией вектора силы. Заметим, что в этом выражении легко перейти к другой переменной интегрирования, ко времени. A12='интеграл от 1 до 2'(F(вектор)dr(вектор)) = 'интеграл от t1 до t2'((F(вектор)V(вектор))dt)= 'интеграл от t1 до t2'(Ndt) (11.4). Введенная здесь величина N наз. мгновеной механической мощностью или просто мощностью тела. N=dA/dt=(F(вектор)dr(вектор)/dt)=(F(вектор)v(вектор)) (11.5). Что будет происходить с системой (в простейшем случае -с мат. точкой) при совершении работы над ней. Запишем элементарную работу и выразим силу в нем при помощи 2го з-на Ньютона. dA=(F(вектор)dr(вектор))=m(a(вектор)dr(вектор))=m(dv(вектор)dr(вектор))/dt=m (dv(вектор)v(вектор))=md(v(вектор)v(вектор))/2=md(v^2)/2=d(mv^2/2) (11.6) Слева стоит элементарная работа, а справа дифференциал некоторой ф-и ,имеющий размерность работы и зависящий от скор.: дифференциал ф-и скор., опред-мой совершеной работой. Пусть в начальный момент времени t0 скорость тела равнялась (0. Полную работу за промежуток времени от t0 до t1 получим после интегрирования dA, как это сделано в формуле (11.4). Совершаемая над телом работа привела к увеличению его скор..Теперь можно ввести понятие кин. энергии: A01=m(v1)^2/2 - m(v0)^2/2 = Ek1-Ek0. (11.7) Кинетическая эн-я опр-ся работой, кот. совершена над телом. Положительная работа приводит к увеличению скор. тела и к увеличению кин. энергии, отрицательная - к уменьшению того и другого. If сист. сост. из многих тел, то ее кинетическая эн-я складывается из кинетических энергий всех тел. 12. Поля консервативных сил. Потенциальная энергии . 13. З-н сохранения механической энергии. Кроме кин. энергии есть еще потенциальная эн-я, для кот. не сущ-вует общей формулы. Это понятие можно ввести лишь для огранич. класа сил - для консервативных сил. Это силы, работа кот. по замкнутой траектории =а нулю. Существует другое определение консервативных сил. Консервативными силами называются такие силы, работа в поле кот. не зависит от траектории и опр-ся только начальным и конечным положением системы. Нетрудно показать, что эти определения равнозначны. Действительно, if работа не зависит от траектории, то при обратном движении вдоль траектории она будет такая же, но с обратным знаком. Просуммировав движение по замкнутой траектории, состоящей из 2х кривых, получаем в сумме 0. Консервативные силы, как правило, зависят только от положения тела, а неконсервативные - от его скор.. Рассмотрим примеры полей консервативных и неконсервативных сил. Силы трения или сопротивления явл. неконсервативными. Их направл. опр-ся скор-тью перемещения тел. Силы трения всегда направлены в сторону, противоположную направл. движения, т.е.: F(вектор)тр=- (v(вектор)/v)Fтр. Здесь v(вектор)/v - единичный вектор, направленный вдоль скор. тела. Работа силы трения по замкнутой траектории l =а: A(l)= 'интеграл c кружком от (l)'(-Fтр((v(вектор)/v)dr(вектор)))= -'интеграл от t1 до t2'(Fтр((v(вектор)/v)dr(вектор)/dt)dt)= -'интеграл от t1 до t2'(Fтр((v(вектор)v(вектор))/v)dt)= -'интеграл от t1 до t2'(Fтр*vdt)=- 'интеграл c кружком от (l)'(Fтр*dl). Кружок у интеграла - интегрирование по замкнутой траектории. Последнее подынтегральное выражение скалярное, оно всегда положительно, след., работа силы трения на замкнутой траектории всегда отрицательна. Эта работа тем больше по модулю, чем длинее путь. Вывод: силы трения - неконсервативные силы. Примером поля консервативных сил явл. поле тяготения вблизи пов-ти Земли. Работа, кот. затрачивается на перемещение тела из положения r1 в полож. r2 =а: A12='интеграл от r1 до r2'(mg(вектор)dr(вектор))='интеграл от r1 до r2'(mg dr(g))=-mg'интеграл от h1 до h2'(dh)=mg(h1-h2). Из этой формулы видно, что работа силы тяжести зависит от величины этой силы и от разности начальной и конечной высот тела. Никакой зависим. от формы траектории нет, а знчит, сила тяжести консервативна. Также просто можно доказать, что консервативными явл. силы, создающие однородное поле. Поле сил наз. однородным, if в люб. точке этого поля сила, действующая на тело одинакова по величине и направл.. Консервативными явл. также поля центральных сил. Центральными называются силы, направленные вдоль линии взаимдейст. тел, величина кот. зависит только от расстояния между телами. Такому условию удовлетворяют, например, кулоновские силы и силы тяготения. В поле консервативных сил можно ввести еще 1 вид механической энергии - потенциальную энергию. Прежде чем ее вводить, выбирают тчку, в кот. она =а нулю. Потенциальная эн-я тела в люб. точке прост-ва опр-ся работой, кот. нужно совершить, чтобы переместить тело из этой тчки в тчку с нулевой пот. энергией. Отметим 2 существенных момента, вытекающих из этого определения. Во-перв., поскольку расм-ется поле консервативных сил, знач. пот. энергии тела зависит от положения тела и выбора тчки нулевой пот. энергии и не зависит от формы пути, по кот тело перемещается. Во-вторых, поскольку выбор нуля пот. энергии произволен, знач. пот. энергии опр-ся с точностью до аддитивной пост., след. физ. смысл имеет лишь разность потенциальных энергий или приращение пот. энергии, но не сама эн-я. На рис.11.3 мы представили 3 тчки в прост-ве поля консервативных сил: тчку (b), тчку (с) и тчку (о), потенциальную энергию в кот. будем считать =ой 0. Обозначим через Abo работу, кот. совершается при переносе тела из тчки (b) в тчку (o). If перемещать тело из тчки (o) в тчку (b), то совершаемая при этом работа будет =а Aob=-Abo, поскольку меняется направл. движения, но не меняются действующие на тело силы. Работу по перемещению тела из тчки (c) в тчку (o) будем обозначать, как Асo. Точно также Асо=-Аос. При перемещении тела из тчки (b) в тчку (c) совершается работа Abc=-Acb. Согласно определению пот. энергии и формуле (11.3) для вычисления работы имеем: Eп(b)=A(b0)= 'интеграл от b до 0'(F(вектор)dr(вектор)); Eп(с)=A(с0)= 'интеграл от с до 0'(F(вектор)dr(вектор)); (11.8). Eп(b)- Eп(c)= 'интеграл от b до 0'(F(вектор)dr(вектор))- 'интеграл от с до 0'(F(вектор)dr(вектор))= 'интеграл от b до 0'(F(вектор)dr(вектор))+ 'интеграл от 0 до c'(F(вектор)dr(вектор))= 'интеграл от b до c'(F(вектор)dr(вектор))=A(bc) (11.9) Оказалось доказанным следующее утв.: работа, совершаемая при перемещении тела в поле консервативных сил из тчки (b) в тчку (c), =а разности потенциальных энергий тела в точках (b) и (c). Однако, эта же работа =а разности кинетических энергий в точке (с) и (b). A(bc)=Eк(b)- Eк(с)=Eп(с)-Eп(b) => Eк(b)+Eп(b)=Eк(с)+Eп(с) (11.10) Получилось, что сумма кин. и пот. энергии тела, кот. наз. полной механической энергией тела, оказалась неизменной. Тоже самое справедливо и для системы механических тел. Получившееся утв. носит наз. з-на сохранения механической энергии: полная механическая эн-я изолированной системы в кот. действуют консервативные силы остается неизменной. Между консервативными силами и пот. энергией должна быть связь, поскольку потенциальная эн-я вводится только в поле консервативных сил. Найдем эту связь для простейшего случая, когда потенциальная эн-я зависит только от 1ой координаты. Примером может служит потенциальная эн-я вблизи пов-ти Земли, к нему и обратимся. Пусть ось (oy) направлена вертикально вверх и имеет ноль на пов-ти Земли. Тогда потенциальная эн-я зависит только от координаты y и =а: Eп=mgy. Возьмем частную производную по координате y от левой и правой частей =ства: dEп/dy=mg. Справа стоит сила тяжести, кот. направлена вверх, т.е. против оси (oy). По-видимому, производной, стоящей в левой части =ства тоже можно приписать направл.; ее проекция на ось (oy) будет =а (dEп/dy)'subscript y'=- mg=-F'subscript y'. В случае, когда действующая сила имеет проекции на все координатные оси, можно записать аналогичные выражения и для проекций на друг. оси. Fx=-dEп/dx; Fy=-dEп/dy; Fz=-dEп/dz (11.11) Для силы, таким обрзом, справедливо выражение: F(вектор)=-(e(вектор)x(dEп/dx)+ e(вектор)y(dEп/dy)+ (вектор)z(dEп/dz))=-( e(вектор)x(d/dx)+e(вектор)y(d/dy)+e(вектор)z(d/dz))Eп= -grad Eп (11.12). Градиент пот. энергии. Отметим некоторые св-ва этого вектора. Особенность его сост. в том, что вдоль координатных осей нужно откладывать не числа, а математические операции дифференцирования по соответствующей координате. За градиентом обязательно должна стоять скалярная ф-я, к кот. он применяется. Градиент пот. энергии имеет направл., в кот. потенциальная эн-я увеличивается быстрее всего, и величину, равную скор. этого увеличения, if двигаться в этом направлении. Из сказанного след., что силы поля заставляют тело двигаться в направлении минимума пот. энергии. Все ественые процесы стремятся привести систему к минимуму пот. энергии. Этот вывод справедлив не только для механики, но и для других разделов физики и естествознания. 14. Внутр. эн-я системы. З-н сохр-я энергии. Мы рассмотрели взаимопревращение кин. и пот. энергий в поле консервативных сил. Что происходит, if действуют неконсервативные силы. Мы знаем, что, if телу сообщит скорость (сообщить кинетическую энергию)и пустить двигаться, например, по пов-ти земли, оно остановиться за счет сил трения. Его потенциальная эн-я не изменится, а кинетическая станет =ой нулю, когда оно остановиться. Для ответа на вопр, во что перешла кинетическая эн-я, необходимо ввести еще 1 вид энергии- внутреннюю энергию. Определим внутреннюю энергию Евн как сумму кинетических и потенциальных энергий частиц (атомов), составляющих тело: Евн=S((Е^i)пот+(Е^i)кин) (11.13) Здесь N -число частиц, i -номер частицы. Параметром, характеризующим внутреннюю энергию явл. температура тела Т0К, выраженная в градусах Кельвина. Чем больше температура тела, тем с большей скор-тью двигаются атомы и тем самым больше внутренняя эн-я. Численно внутренняя эн-я =а: Евн=(М/'мю')C Т^0 (11.14) М - маса тела, ??????молярная маса (численно равная атомному или молекулярному весу составляющих атомов),С -теплоемкость, равная энергии, кот. нужно передать 1му килограмму-молю, чтобы нагреть его на 1 градус Цельсия или Кельвина. Изменение внут. энергии при переходе системы из состояния 1 в сост. 2 пропорционально изменению температуры тела: Евн(2)- Евн(1) = 'дельта'U = (M/m)C 'дельта T^0. Сумму кин., пот. и внут. энергий системы принято называть полной энергией Е. В рассмотренном нами примере с останавливающемся телом кинетическая эн-я тела переходит во внутреннюю энергию, т.е. идет на нагревание системы. С учетом вышесказанного мы можем сформулировать з-н сохранения полной энергии системы: Полная эн-я изолированной системы остается пост.. Мы теперь не конкретизируем, какие силы (консервативные или неконсервативные) действуют в этой сист-е. Работа в сист-е, совершаемая за счет пот. энергии, может переходить и в кинетическую энергию системы, и во внутреннюю энергию. При увеличении внут. энергии сист. нагревается. 12.1 Постулаты Т. отнсит-ти. К концу прошлого в. Д.К.Максвеллом (1831-1879) были сформулированы осн. законы электричества и магнетизма в виде системы дифференциальных уравнений, кот. описывали постоянные и переменные электрические и магнитные поля. Решения системы уравнений Максвелла описывали всю гамму поведений электромагнитных полей в прост-ве и времени. Из системы уравнений Максвелла следовало, что переменные электрические и магнитные поля могут существовать только в форме единого электромагнитного поля, кот. распространяются в прост-ве после возникновения с пост. скор- тью, =ой скор. света в вакууме - с. На вопр о том, в какой среде распространяется это поле, Т. Максвелла ответа не давала. Ключевым моментом Т. Максвелла являлось то, что уравнения Максвелла были неинвариантны относит. преобр. Галилея. Это означало, что при переходе с помощью преобр. Галилея из 1ой инерц. системы отсч. в друг., уравнения меняли свой вид. Это обозначало, что преобр. Галилея нельзя было применять при описании электрич. и магнитных явлений. Строгое математическое доказательство неинвариантности уравнений Максвелла относит. преобр. Галилея достаточно сложно. Поэтому, проиллюстрируем этот факт на простом и наглядном примере. Для этого потребуется вспомнить, какие силы действуют на движущиеся заряды в электрич. и магнитных полях. Пусть 2 одноименных заряда летят с одинаковой скор-тью в направлении оси (ox), как это показано на рис.12.1. В неподвижной сист-е отсч. заряды будут создавать электрические и магнитные поля, и, след., будут находиться в полях друг друга. Электрическое поле воздействует на заряд силой Кулона, магнитное - силой Лоренца. Напомним формулы для вычисления этих сил для случая, приведенного на рисунке. Fк=1/4Пи'эпсилонт нулевое'*q1q2/l^2; Fa=q2*v*B1, где B1=4*Пи*q1*v/'мю нулевое'*l^2. Здесь B1 - магнитная индукция, создаваемая первым зарядом в точке, где находится 2й. Сила Кулона для одноименных зарядов всегда явл. силой отталкивания, а сила Лоренца в данном случае явл. силой притяжения. Тким обрзом, в неподвижной сист-е отсч. величина силы взаимдейст. =а: F = FK - FЛ. If перейти к сист-е отсч., движущейся вдоль оси (ох) со скор-тью ( вместе с зарядами, то в ней заряды окажутся неподвижными, и сила Лоренца не возникнет. Тким обрзом, силы взаимдейст. зарядов в различн. инерц. сист. отсч. окажутся разными. След. и поведение частиц ,их движение во времени, будет разным в зависим. от того, в какой инерц. сист-е коорд. мы рассматриваем это движение. Есcно, что это абсурд и отсюда сделаем вывод, что к движущимся зарядам, законы движения и взаимдейст. кот. описываются уравнениями Максвелла, нельзя применять принцип отнсит-ти Галилея, т.е. преобр. Галилея. Вторым этапом в становлении специальной Т. отнсит-ти стал опыт А.А.Майкельсона (1852-1931), проведенный в 1881 году. В опыте определялась скорость света в различн. движущихся сист. отсч.. Уже говорилось, что по Т. Максвелла электромагнитные волны должны распространяться со скор-тью в вакууме - с. Встал вопр, в какой инерц. сист- е отсч. это происходит. If таковой считать систему отсч., связанную с неподвижными звездами, то скорость нашей планеты относит. них ( = 30 км/с. Эта скорость большая и сравнимая со скор-тью света с. Майкельсон экспериментально определял скорость света в разных сист. отсч., а имено, он измерял скорость света, идущего в 2х противоположных относит. Земли напр- ях. В соответствии с преобразованиями Галилея и положениями класич. механики, скор. света в этих сист. отсч. должны были бы отличатся на величину 2v. Результаты эксперимента Майкельсона однозначно показали, что скорость света не зависит от выбора системы отсч. и всегда =а с. Т.е. было установлено, что электромагнитные волны во всех инерц. сист. отсч. распространяются с одинаковой скор-тью с(3(108 м/с. Эксперименты, подобные опыту Майкельсона повторялись неоднократно со все возрастающей точностью. На сегодняшний день можно утверждать, что скорость в различн. сист. отсч. одинакова с точностью порядка нескольких мм/с. 16. Преобразования Лоренца. В 1904-м году голландский физик Х.А.Лоренц (1853-1928) вывел преобр. для перехода из 1ой инерц. системы отсч. в друг., отличные от преобр. Галилея. Сист. уравнений Максвелла была инвариантна относит. этих преобр.. Преобразования касались и коорд., и времени. Обозначим координаты и время некоторого события (например положения мат. тчки в прост-ве) в инерц. сист-е отсч. К через x, y, z, t, а в другой инерц. сист-е отсч. К' через x',y',z',t'. Системы отсч. выбраны так, чтобы их координатные сетки начальный момент времени t=t'=0 совпадали, а в дальнейшем сист. К' двигалась относит. системы К со скор-тью u вдоль ее оси (ox). Преобразования Лоренца имеют вид: x'=x-ut/'корень'(1-(u/c)^2); y'=y; z'=z; t'=(t-ux/c^2)/'корень'(1-(u/c)^2) (12.1). Сразу можно сказать, что при u/c 'стремится' 0 преобр. Лоренца переходят в преобр. Галилея. Т.е. преобр. Галилея явл. частным случаем преобр. Лоренца при малых скоростях движения. Анализируя сложившееся полож. А.Эйнштейн разработал новую механику больших скоростей, называемую сейчас релятивистской механикой или специальной Т. отнсит-ти. В основе этой Т. лежат 2 постулата. Согласно первому постулату скорость распространения света во всех инерц. сист. коорд. одинакова и =а скор. распространения света в вакууме - с. Этот постулат утверждает эквивалентность инерц. систем отсч. относит. скор. света. 2й постулат закл. в том, что все физические законы и явл-я формулируются и протекают одинаково во всех инерц. сист. отсч., т.е. инвариантны относит. преобр. Лоренца. Базируясь на этих постулатах, Эйнштейн разработал Т. движения систем при любых скоростях, вплоть до скоростей света. В рамках Т. отнсит-ти получены выводы, казалось бы противоречащие законам класич. механики. Однако, все выводы этой Т. подтверждены экспериментально с высокой точностью. Согласно принципу соответствия старая Т. (классическая механика или механика движения тел при малых скоростях) явл. частным случаем новой. И наоборот, новая Т. отнсит-ти переходит в старую классическую механику при скоростях движения v< 17. Релятивистская механика. Сокращение длины и времени. Обратимся к преобразованиям Лоренца (12.1). Из них след., что максимальная скорость движения мат. систем ограничена скор-тью света в вакууме с. If бы скорость движения тела превысила скорость света, то, как след. из преобр. Лоренца, координаты и время станут мнимыми т.е. потеряют реальный физ. смысл. Теперь рассмотрим некоторые следствия из преобр. Лоренца. В класич. механике расстояние между двумя точками и время были одинаковым во всех инерц. сист. отсч.. В релятивистской механике они оказались разными в различн. инерц. сист. отсч., т.е. перестали быть инвариантами. Но инварианты относит. преобр. Лоренца должен быть. 1им из них явл. скорость света в вакууме - с. Она действительно одинакова во всех инерц. сист. отсч.. Другим инвариантом этих преобр. явл. так называемый интервал между событиями. Его квадрат равен: 'дельта'S^2=c^2*'дельта't^2-'дельта'x^2+'дельта'y^2+'дельта'z^2 (12.2). Благодаря инвариантности интервала пространство и время оказываются взаимосвязанными. Они образуют единое четырехмерное пространство-время. Вдоль четвертой оси откладывается мнимая величина ict. Четырехмерное пространство-время было впрвые введено Г.Минковским (1864-1909) и сейчас носит его имя. Попробуем представить себе такое пространство. Мы умеем делать проекции трехмерного прост-ва на двухмерное. Например, таким обрзом мы рисуем на доске трехмерную систему коорд. на плоскости - двухмерном прост-ве. Представим себе в объемном трехмерном прост-ве проекцию четырехмерного куба. Это будут 2 куба, каждая из вершин одного куба соединена с соответствующей вершиной 2го куба линией четвертого измерения. Расстояние между двумя точками в четырехмерном прост-ве и будет интервал в соответствии с законами геометрии. Проанализируем теперь на основе преобр. Лоренца одновременность событий в разных сист. отсч.. В класич. механике использовался принцип дальнодействия, когда взаимдействие между телами осуществлялись мгновенно через люб. расстояние. В этом случае мы могли бы ставить одно и тоже время в разных сист. коорд.. Попросту говоря синхронизовать время и задавать его одним и тем же. Рассмотрим эксперимент по синхронизации часов, базируясь на постулатах Т. отнсит-ти. Представим себе следующую ситуацию (см. рис.12.2). Первый наблюдатель 1 стоит на земле и мимо него двигается вагон, в середине кот. стоит 2й наблюдатель 2. В начале и конце вагона расположены часы (1) и (2) кот. нужно синхронизовать. Это проще всего сделать следующим обрзом. 2й наблюдатель в вагоне посылает свет в 2е стороны и в момент прихода света на часы, они включаются с нуля и идут синхронно. С тчки зрения наблюдателя в вагоне часы показывают одинак. время. Рассмотрим, что покажут часы первому наблюдателю, стоящему на земле. Скорость распространения света постояна в люб. сист-е отсч.. Пока свет распространяется в конец вагона, часы 1 переместятся ему навстречу и будут включены раньше. Часы 2 уйдут за время распространения света и будут включены позднее. Тким обрзом, с тчки зрения первого наблюдателя часы будут показывать разное время , а с тчки зрения 2го наблюдателя - одинак.. Время будет разное для 2х разных наблюдателей, находящихся в различн. инерц. сист. отсч.. К этому же результату можно прийти и чисто формально, при помощи преобр. Лоренца. Покажем это. Пусть в неподвижной сист-е отсч. К 2 события происходят одновремено, т.е.t1=t2. Найдем разность 'дельта't'=t2'-t1' в сист-е отсч. К', перемещающейся относит. К вдоль оси x со скор-тью u. Для этого воспользуемся преобразованием Лоренца для времени. 'дельта't'=t2'-t1'=(t2 - u*x2/c^2 - t1 + u*x1/c^2)/'корень'(1-(u/c)^2)=((t2-t1) + (u/c^2)*(x1-x2))/'корень'(1- (u/c)^2)=u(x1-x2)/(c^2)*'корень'(1-(u/c)^2) 'не равно' 0, т.к. x1'не равно'x2. Не вдаваясь в детальный анализ, укажем, что изменение длительности промежутков времени не касается принципа причинности: if из 2х событий, одно явл. следствием другого и разделены промежутком времени, то в люб. инерц. сист-е отсч. эти события также разделены промежутком времени, и последовательность событий не нарушается. Т.е. следствие всегда идет после причины. Обратимся еще раз к примеру, приведенному в параграфе 12.1, в кот. рассматривалось взаимдействие 2х движущихся зарядов, и ответим на вопр, почему же все-таки силы взаимдейст. окажутся для разных наблюдателей разными. Ответ на него закл. в том, что в движущейся сист-е отсч. время течет медленнее, и ускорение, а знчит, и сила взаимдейст. уменьшится. Кроме изменения хода часов наблюдается изменение размеров (укорочение) быстро движущихся объектов. Этот эфект тоже может быть выведен из преобр. Лоренца. Связь длины отрезка, направленного вдоль скор. движения, в сист-е К (наблюдаемая длина l) и в сист-е K' (собственная длина l0) задается формулой: l=l0*'корень'(1-(u/c)^2) (12.4). Т.о собственная длина всегда максимальна. Отметим, что сокращаются лишь размеры тела вдоль направл-я скор. системы K'. Изменение размеров - кажущийся, ненаблюдаемый эфект. В релятивистской механике предсказан еще целый ряд парадоксальных с тчки зрения класич. механики явлений. В настоящее время большинство из них наблюдались в экспериментах. При этом не наблюдалось отклонений от предсказаний специальной Т. отнсит-ти. |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |