![]() |
|
|
Технология производства и товароведная оценка разных сортов мармеладаследовательно, степень перенасыщения. Изделия с большим содержанием других, кроме сахара, компонентов засахариваются медленнее, задерживается кристаллизация и в изделиях, отличающихся высокой вязкостью или наличием антикристаллизаторов. К последним относятся обычно вещества, не имеющие кристаллической структуры, с высоким молекулярным весом и повышенной вязкостью растворов. Обычно при засахаривании изделий происходит образование кристаллов сахарозы, однако в некоторых случаях кристаллизуется глюкоза; это характерно для глюкозного засахаривания. Фруктоза не кристаллизуется в кондитерских изделиях вследствие большой ее растворимости. При изготовлении кондитерских изделий с молочными продуктами могут иметь место и превращения молочного сахара-лактозы, дисахарида, в состав которого входят глюкоза и галактоза. Существует две формы этого сахара—[pic]-лактоза и [pic]-лактоза. Лактоза малорастворимая в воде, она наименее растворима из всех сахаров. При температуре ниже 93,5°С кристаллизуется [pic]- форма лактозы с одной молекулой воды, а при более высоких температурах выпадает безводный [pic] -изомер лактозы. При охлаждении растворов [pic]-формы лактоза переходит в [pic]-форму. При уваривании кондитерских масс, содержащих молоко, равновесие перемещается в сторону образования [pic]-формы, а при охлаждении [pic]-форма опять преобразуется в [pic]-форму, которая может выкристаллизовываться как менее растворимая. Растворимость [pic]-формы примерно в 1,5 раза больше, чем [pic]-формы и зависит от температуры (например, при 20° С растворимость [pic]-формы 6,2%, [pic]-формы—9,9%). При концентрации лактозы в растворе ниже 3% опасность в се кристаллизации отпадает. Если лактоза находится в смеси с другими сахарами, то она несколько снижает растворимость сахарозы и глюкозы. Изменение углеводов при нагревании. Процессы изменения углеводов при нагревании весьма многообразны. Возможно образование многих соединений в зависимости от исходных интенсивности и режима нагревания, реакции среды, присутствия соединений, играющих роль катализаторов и антагонистов реакции тех или иных типов. При нагревании сахаров в слабокислой или нейтральной среде, т. е. в условиях обычно встречающихся в производстве кондитерских изделий, образуется сложная по составу смесь продуктов изменения сахаров. Если нагревание водных растворов сахаров (например, при уваривании карамельной массы) вести при значительно повышенных температурах или, что более вероятно, в условиях местного перегрева (при температуре выше 150—160°С), слишком длительной температурной обработки, может произойти значительная деструкция углеводов, для характеристики которой применяется термин «карамелизация». При выпечке мучных кондитерских изделий, например, штампованного печенья, чрезмерно высокая температура печи (намного выше 260°С) или увеличенная продолжительность выпечки (значительно более 6—8 мин) вызывают сильное потемнение, образование подгорелых мест. Эти процессы происходят в результате изменения растворимых сахаров, входящих в состав теста для мучных кондитерских изделий: сахарозы, глюкозы, фруктозы (из сахарозы, меда и т. п.), лактозы (из молочных продуктов). Деструкция крахмала под влиянием высоких температур, как известно, тоже ведет к образованию ангидридов глюкозы, карамелизации углеводов. Продукты изменения сахаров при их нагревании в обычных, близких к нормальным, условиях производства могут содержать главным образом следующие соединения: ангидриды сахаров; оксиметилфурфурол и другие карбонильные соединения — диоксиацетон, глицериновый альдегид и др.; кислые продукты изменения—левулиновую, муравьиную, молочную кислоты; окрашенные соединения—гуминовые и красящие вещества и др. Нагревание глюкозы в нейтральной или слабокислой среде, прежде всего, вызывает дегидратацию сахара с выделением одной или двух молекул воды. Ангидриды сахаров могут частично соединяться один с другим или с неизмененным сахаром и образовывать так называемые продукты реверсии—конденсации. Дальнейшее тепловое воздействие вызывает отделение третьей молекулы воды с образованием оксиметилфурфурола и последующими реакциями. При обычной тепловой обработке углеводы, вероятно, не претерпевают глубоких изменений, а образуются в основном их ангидриды. Превращение сахаров при нагревании, по-видимому, идет через форму с открытой карбонильной группой (оксоформу). Глюкоза при нагревании может дать соединение (левоглюкозан), в отличие от нее вращающее плоскость поляризации влево. Левоглюкозан не обладает восстанавливающими свойствами и в присутствии кислоты снова превращается в глюкозу. Фруктоза в присутствии щелочей и кислот разлагается очень быстро. Она, возможно, является основным источником образования молочной кислоты при нагревании. Фруктоза способна к образованию диангидридов. Один из них — дигетеролевулезан — может образовываться при сравнительно мягких условиях реакции. В этом случае вода удаляется из двух молекул фруктозы. При нагревании сахарозы в нейтральной или слабокислой среде наряду с инверсией (образованием глюкозы и фруктозы) происходит накопление соединений с различной молекулярной массой. При нагревании сахарозы в сухом виде до 150°С происходит разрыв глюкозидной связи и образуется глюкоза и остаток фруктозида, который может образовывать [pic]- и [pic]-фруктозидные связи с сахарозой и глюкозой. При приготовлении инвертного сиропа из сахарозы образуются не только глюкоза и фруктоза, но и продукты их изменения. При получении инвертного сиропа в присутствии инвертазы в сиропе, например, обнаружена кестоза—соединение фруктозы с сахарозой. Производство изделий губчатой структуры (пастилы, зефира, сбивных конфет). Сбивной слой имеет губчатую структуру. Такие изделия формуют из пенообразных масс, в которых дисперсионной средой является сахаро-фруктово- белковый, сахаро-пектиново-белковый или сахаро-агаро-белковый золь, способный при определенных условиях переходить в гель или студень, а дисперсной фазой - недоформированные пузырьки воздуха. Пены являются ячеисто-пленчатыми дисперсионными системами, образованными большим количеством пузырьков воздуха, разделенных тонкими пленками дисперсионной среды. Под влиянием силы притяжения дисперсионная среда течет, пленки пены становятся более тонкими, и пузырьки воздуха лопаются, или объединяются, пена коалесцирует, т.е. оседает. Для получения пены необходимы затраты энергии для преодоления силы поверхностного натяжения дисперсионной среды. В кондитерской промышленности для введения в массу воздуха применяется сбивание. Для облегчения процесса сбивания и получения более устойчивых пен вводят пенообразователи. Наиболее распространенным пенообразователем в кондитерском производстве является свежий или замороженный белок куриных яиц. Можно применять и сухой, полученный при температуре не выше 45 С. Дисперсность воздушных пузырьков зависти от природы пенообразователя, его доли и других факторов. Например, средний размер воздушных пузырьков в пастильной массе, сбитой с яичным белком, равен 15-25 мкм, размер пузырьков в этой же массе, сбитой в тех же условиях, но с молочным гидролизатом, - 30-40 мкм. При повышении концентрации пенообразователя масса приобретает более высокую дисперсность, структурно-механические свойства ее изменяются: уменьшается текучесть и увеличивается предельное критическое напряжение сдвига. Чем выше и меньше вязкость раствора, тем лучше пенообразование, меньше плотность пенообразной массы. Например, при увеличении концентрации пенообразователя от 1 до 3,75% (при концентрации сахара 75%) содержание воздуха в сбитой массе при одинаковых условиях сбивания повышается от 34 до 59%, плотность массы уменьшается с 905 до 580 кг/м3. Средний радиус пузырьков воздуха уменьшается с 12 до 2,5-3,5 мкм. На пенообразующую способность яичных белков большое влияние оказывают сахар, яблочное пюре, патока, агар (и др. желирующие вещества) и прочие добавки. Характеристика пенообразователей и условия получения пенообразных масс. Пенообразующая способность яичных белков сильно снижается, если к белку добавить жиры (с желтком) или вещества с более высокой поверхностной активностью. Соли кальция, магния снижают действие пенообразователей. Сухой белок вырабатывается в виде порошка белого цвета и стекловидной крошки жёлтого цвета. В целях повышения пенообразующей способности этот белок до сушки подвергают ферментативному гидролизу. Во ВНИИ молочной промышленности разработаны новые пенообразователи из гидролизатов молочного белка, в которых содержатся остаточный казеин и промежуточные продукты распада. В Голландии вырабатывают пенообразователь хайфоама, являющийся также продуктом гидролиза казеина. Все пенообразователи, изготовленные на основе молочного белка, довольно хорошо образуют пену лишь в нейтральных и слабо кислых средах. Поэтому они применяются при изготовлении некоторых сбивных сортов конфетных масс и неподкисляемых сбивных масс для многослойного желейного мармелада. Качество пенообразных структур характеризуется объёмной концентрацией дисперсной фазы, структурно-механическими свойствами. Дисперсность пенообразной структуры определяет вкусовые ощущения и зависит от концентрации пенообразователя и его природы. Увеличение доли сахара в кондитерской пенообразной массе повышает её вязкость, благодаря чему замедляется её разрушение, но затрудняется пенообразование. Пектиновые вещества яблочного пюре, адсорбируясь на плёнках воздушных пузырьков, повышают прочность и стойкость пенообразной массы и практически не влияют на дисперсность. Патока является антикристаллизатором и предотвращает засахаривание изделий. 1.5.3 Производство фруктово-ягодного мармелада Процесс получения фруктово-ягодного мармелада состоит из следующих стадий: подготовки сырья, подготовки рецептурной смеси, уваривание мармеладной массы, разделки массы, отливки формы (формовой) или лотки (пластовый), сушки (формовой), выстойки (пластовый), упаковки. Подготовка сырья. Смешивают (купажируют) различные партии яблочного пюре в зависимости от качественных показателей (содержание сухих веществ, студнеобразующая способность, кислотность, цветность и др. показатели). Полученную смесь протирают через сита с отверстием диаметром не более 1 мм, купажирование производят в емкостях из нержавеющей стали, оборудованных мешалками. Кристаллические пищевые кислоты растворяют в воде в соотношении 1:1 и фильтруют через тонкую ткань или несколько слоев марли. Фильтруют и молочную кислоту, которая поступает в виде раствора обычно в концентрации 40%. Сахар протирают через сита с отверстием диаметром не более 3 мм и пропускают через магниты для удаления металлопримесей. Патоку процеживают в подогретом состоянии через фильтры с отверстием диаметром не более 2 мм. Приготовление рецептурной смеси. Рецептурную смесь получают путем смеси купажированного, протертого яблочного и ягодного пюре с сахаром- песком и патокой. Обычно соотношение пюре и сахара составляет 1:1. При изготовлении ягодных видов мармелада (сливового, ежевичного и др.) яблочному пюре без введения пюре др. видов полученную массу называют яблочной, а полученный из нее мармелад — яблочным. Предусмотренное унифицированными рецептурами количество пюре, вводимое в рецептурную смесь, корректируют по данным лабораторного анализа в зависимости от содержания в нём сухих веществ и студнеобразующей способности. Студнеобразующая способность пюре обусловливается в значительной степени качеством и количеством содержащегося в нём пектина. Для образования хорошего мармеладного студня в нём должно содержаться 0,8 - 1,2 % пектина, 65-70% сахара и 0,8-1 % кислоты (в пересчёте на яблочную). Эти соотношения могут несколько изменяться в зависимости от качества пектина, содержащегося в пюре. В связи с этим на производстве обычно оптимальное соотношение основных компонентов рецептуры уточняют путём проведения пробных варок. В рецептурную смесь кроме основных видов сырья (пюре, сахар, патока) вводят соли-модификаторы: лактат натрия или динатрийфосфат, возможно применение и других солей, например цитрата натрия и татрата натрия. При введении этих солей снижаются скорость и температура застудневания мармеладной массы, вязкость массы при уваривании. Вследствие этого при внесении солей-модификаторов возможно уваривание до более высокого содержания сухих веществ, что обусловливает значительное сокращение продолжительности сушки. В результате продолжительность всего производственного цикла изготовления фруктово-ягодного мармелада намного сокращается. Соли-модификаторы, кроме того, оказывают положительное воздействие, значительно снижая интенсивность процесса гидролиза сахарозы и в некоторой степени пектина и других веществ. При введении солей- модификаторов процесс образования редуцирующих веществ под воздействием кислоты, содержащейся в пюре, существенно замедляется. Оптимальная дозировка солей-модификаторов, вводимых в рецептурную смесь, зависит от кислотности используемого пюре. Чем выше кислотность, тем больше необходимо ввести солей-модификаторов. Соли-модификаторы вносят в рецептурную смесь непосредственно в фруктово-ягодное пюре до введения сахара. Рецептурную смесь приготовляют периодическим способом в ёмкостях, оборудованных мешалками. После введения всех компонентов массу тщательно перемешивают и подают на уваривание. Уваривание мармеладной массы. Мармеладную массу в настоящее время уваривают в змеевиковых аппаратах. Можно уваривать массу также в вакуум- аппаратах периодического действия (сферических аппаратах), а также в универсальных варочных аппаратах. Змеевиковый варочный аппарат состоит из стального корпуса (варочной колонки), внутри которого расположен медный змеевик. Внутрь цилиндра подается пар давлением 294—392 кн/м2 (3—4 ат). Рецептурная смесь влажностью 45—50% плунжерным насосом непрерывно подается в змеевик варочной колонки, где происходит уваривание. Сваренная масса с температурой 106—107°С из змеевика попадает в пароотделитель, где происходит отделение сокового пара. Мармеладная масса, приготовленная без лактата натрия, имеет влажность 38—40%, а с лактатом натрия 26—32%. Готовая масса самотеком поступает в сборник-смеситель, куда добавляются вкусовые и ароматические вещества: кислота, припасы, эссенция и красители. После тщательного перемешивания масса поступает на разливку. Сферические аппараты для уваривания мармеладной массы применяются с мешалкой и без мешалки. Их полезная емкость не должна превышать 150л. В рецептурную смесь, предназначенную для уваривания в сферическом аппарате, вводится сахара 95% от количества, предусмотренного рецептурой, остальное же количество ее добавляется в конце варки или после ее окончания. Уваривание производят при давлении греющего пара 294—392 кн/м2 (3—4 ат) и остаточном давлении 34,6-—48 кн/м2 (разрежении 400—500 мм рт. ст.). Готовность сваренной массы определяется по влажности с помощью рефрактометра, а также пробой на «садку» (определение качества желе). Для этого разливают небольшое количество массы в несколько ячеек мармеладной формы и определяют скорость образования желе и его прочность. Продолжительность уваривания зависит от величины загрузки массы и влажности рецептурной смеси и составляет в среднем 15— 20 мин. Сваренную массу выгружают из вакуум-аппарата в смесители или медные котлы, куда добавляют вкусовые и ароматические вещества, а также 5—10% сахарного песка, который был исключен при составлении рецептурной смеси (так называемый «второй сахар»). Такой метод дает возможность управлять процессом студнеобразования и предотвращать выпадение пектинового студня из мармеладной массы. Преждевременное образование пектинового студня возможно при благоприятном соотношении сахара, пектина и кислоты в мармеладной массе. Уменьшение количества сахара, вводимого перед увариванием, исключает такую возможность. Благодаря введению «второго сахара» в конце или после уваривания снижается температура кипения массы и тем самым уменьшается нарастание инвертного сахара. В случае преждевременного образования студня в конце или. сразу после уваривания такой студень непригоден для дальнейшей обработки и может быть использован для приготовления подварки или повидла. При непрерывном уваривании мармеладной массы в змеевиковом аппарате с применением лактата натрия процесс идет быстро, поэтому преждевременного желеобразования пектина не бывает и нарастание инвертного сахара происходит медленно. В связи с этим нет необходимости добавлять сахар после окончания процесса. Мармеладную массу можно уваривать также в универсальном варочном аппарате. Универсальный варочный аппарат состоит из двух котлов, расположенных один над другим. Верхний котел снабжен мешалкой и паровой рубашкой. В нижней части котла имеется отверстие, соединяющее верхний котел с нижним и закрывающееся клапаном. Нижний котел не имеет парового обогрева и соединён с конденсационной установкой. Рецептурную смесь загружают в верхний котел и уваривают в течение 6- 8мин при давлении пара 392—491 кн/м2 (4—5 ат) и непрерывном перемешивании до влажности 31—33%, а затем открывают клапан и перепускают массу в нижний котел. При разрежении масса дополнительно концентрируется. Сюда же добавляются вкусовые и ароматические вещества и, если требуется, сахар. Готовая мармеладная масса содержит 30—32% влаги и 13—17% редуцирующих веществ. Разливка мармелада в формы, застудневание и выборка из форм. Для разливки мармелада применяется мармеладоотливочная машина, которая производит отливку мармелада в формы и выборку его из форм после застудневания. Готовая мармеладная масса коловратным насосом перекачивается по трубе в воронку отливочного механизма и при помощи дозаторов разливается в металлические формы. Формы проходят через механический встряхиватель и поступают в камеру охлаждения, где происходит желирование мармелада. После этого формы с мармеладом передаются на нижнюю ветвь транспортера и подогреваются для облегчения выборки мармелада. Подогретые формы поступают в выборочный механизм, где мармелад пневматически выталкивается из форм на решета. На небольших предприятиях применяется еще ручная разливка. Мармелад разливают из воронок в формы, которые представляют собой плитки из белой глины с углублениями, покрытые глазурью. Применяются также металлические формы. После разливки мармелад в формах выстаивается для желирования (садки). Образование мармеладного студня происходит при температуре 70°С. При применении лактата натрия температура студнеобразования снижается до 65°С. Продолжительность застудневания колеблется в пределах 15—30 мин и зависит от количества добавляемого лактата натрия и температуры окружающего воздуха. Температура воздуха в помещении должна быть в пределах 15—20°С причем циркуляция воздуха способствует лучшему охлаждению массы и ускоряет застудневание. При неправильно составленной рецептуре и затянувшемся уваривании студнеобразования может не произойти. После застудневания мармелад выбирают из форм и укладывают на решета. Решета для укладки мармелада изготовляются из листового алюминия с отверстиями диаметром около 15 мм. Иногда применяют решета из нитяной сетки, натянутой па деревянные рамки; они менее прочны и менее гигиеничны, так как труднее поддаются мойке Сушка мармелада. Выбранный из форм мармелад имеет влажность 29-30%, рыхлую консистенцию и влажную, липкую поверхность. Для получения штучного мармелада в готовом товарном виде, т.е. в виде стойкого, транспортабельного и имеющего хороший внешний вид продукта, необходимо выбранный из форм сырой полуфабрикат подвергнуть сушке. При этом влажность мармелада доводится до 22—24%. В результате сушки на поверхности мармелада образуется тонкокристаллическая корочка, состоящая из кристалликов сахара. Корочка придает мармеладу хороший вид и является защитным покрытием, предохраняющим мармелад от намокания. Таким образом, в процессе сушки мармелада необходимо удалить излишек влаги и получить на поверхности корочку. Мармелад представляет собой трудно сохнущий продукт, так как значительное количество влаги, содержащейся в мармеладе, находится в связанном виде. Влага в мармеладном студне находится в двух видах—коллоидно связанной влаги и капиллярной влаги. Коллоидно связанная влага состоит из адсорбционно связанной влаги и осмотически удержанной влаги. Адсорбционно связанная влага представляет собой воду, удерживаемую силовым полем на внутренней и внешней поверхности мицелл пектина. Этот вид влаги труднее всего поддается высушиванию. Осмотически удержанная влага, или влага набухания,—это влага, слабо связанная с мицеллами пектина, поэтому она сравнительно легко удаляется высушиванием. Капиллярная влага находится в капиллярах между мицеллами пектина. Она легко удаляется высушиванием, подчиняясь законам испарения со свободной поверхности воды. До применения лактата натрия выбранный из форм мармелад имел Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |