реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Вертикальный пресс

1.8 Описание построения диаграмм работ, изменения кинетиской энергии, диаграммы Виттенбауэра

Методом графического интегрирования диаграммы приведенных моментов сил с полюсным расстоянием получаем диаграмму работ сил сопротивления .

Диаграмма работ движущих сил - прямая линия, соединяющая начало координат с последней точкой диаграммы , так как момент движущих сил .

[1] стр. 135 (1.4)

В соответствии с выражением строим диаграмму избыточных работ (изменения кинетической энергии).

Диаграмму Виттенбауэра строим при помощи диаграмм избыточных работ и приведенного момента инерции , исключая общий параметр : .

1.9 Определение момента инерции маховика

По заданному коэффициенту неравномерности вращения кривошипа и средней угловой скорости определяем углы и , образованных касательными к диаграмме Виттенбауэра с осью абсцисс.

[1] стр. 137

На диаграмме под углами и проводим касательные до пересечения с осью в точках K, L. Величина отрезка

Момент инерции маховика находим по формуле:

(1.5)

1.10 Определение закона движения звена приведения

Угловая скорость , [1] стр. 138 (1.6)

где начальная кинетическая энергия (в начале цикла).

На основании диаграммы Виттенбауэра:

[1] стр. 138 (1.7)

Результаты определения приведены в таблице 1.5, на основании которой построен график . Масштабный коэффициент:

Для положения 0:

Таблица 1.5

№ положения

1

2

3

4

5

6

7

To

2374

2374

2374

2374

2374

2374

2374

Iмах

120,3

120,3

120,3

120,3

120,3

120,3

120,3

Iмах+Iпрi

122,53

122,83

123,36

123,45

123,09

122,69

122,53

0

103

240

391

550

692

791

i

6,46

6,61

6,82

7,01

7,17

7,31

7,41

№ положения

8

9

10

11

12

13

14

To

3060

3060

3060

3060

3060

3060

2374

Iмах

33,5

33,5

33,5

33,5

33,5

33,5

120,3

Iмах+Iпрi

122,53

122,66

123,02

123,45

123,42

122,89

122,53

811

850

850

765

532

152

-30

i

7,43

7,48

7,49

7,44

7,17

6,68

6,42

Определим среднюю угловую скорость:

Определим погрешность вычислений.

2 Динамический анализ рычажного механизма

2.1 Задачи динамического анализа рычажного механизма

Задание внешних сил, действующих на звенья механизма, позволяет найти закон движения начального звена в виде зависимостей ?1(t) и ?1(t). Следовательно, при силовом расчете механизмов законы движения начального звена и всех остальных подвижных звеньев механизма считаются заданными. Угловые ускорения звеньев и линейные ускорения центров масс, определяющие силы инерции звеньев при их движении, могут быть найдены методами кинематического анализа: с использованием аналитических, графических или численных методов исследования.

Знание сил в кинематических парах необходимо для расчетов на прочность, жесткость, износостойкость, надежность, для выбора типа и размеров подшипников, определения коэффициента полезного действия и др.

Решение задач динамического анализа механизма основано на принципе Даламбера.

2.2 Кинематический анализ

Найдем угловое ускорение: Угловое ускорение определяют из дифференциального уравнения движения:

(2.1)

где производная вычисляется по правилу графического дифференцирования.

Для положения 13:

где - угол наклона касательной к графику .

(2.2)

где - угол наклона касательной к графику .

Расхождение угловых ускорений составляет:

Для расчетов принимаем среднее значение:

Используем графический метод построения планов скоростей и ускорений. Определяем скорость точки В:

(2.3)

Принимаем масштабный коэффициент . Тогда отрезок, изображающий , равен:

.

Определяем скорость точки С:

,

где ; .

Определяем ускорение точки В:

(2.4)

где - нормальная составляющая ускорения точки В, направленная от В к А; - тангенциальная составляющая ускорения точки В; сонаправлена с .

(2.5)

(2.6)

Принимаем масштабный коэффициент и находим отрезки, изображающие и :

;

.

Определяем ускорение точки С:

,

где - направлена от точки С к точке В; .

(2.7)

(2.8)

По свойству подобия находим точку S2:

.

Из плана ускорений находим:

(2.9)

2.3 Определение инерционной нагрузки

Определяем силы и моменты сил инерции:

(2.10)

; (2.11)

. (2.12)

(2.13)

Силы инерции направлены противоположено ускорениям центров масс, а моменты сил инерции - противоположено угловым ускорениям звеньев.

2.4 Силовой расчет

Отделяем от механизма статически определимую структурную группу (2,3). В точке С приложена реакция со стороны звена 0, а в точке В - реакция со стороны звена 1. раскладываем на и . находим из уравнения:

(2.15)

, , находим путем построения плана сил согласно уравнению равновесия группы:

(2.14)

Принимаем масштабный коэффициент и находим отрезки, изображающие известные силы:

Из плана сил находим:

Рассматриваем кривошип 1. В точке В приложена известная реакция со стороны звена 2: , а в точке А - реакция , которую находим путем построения плана сил согласно уравнению равновесия:

(2.15)

Оценка точности расчетов

Находим относительную погрешность

3 Синтез зубчатого зацепления

3.1 Проектирование цилиндрической эвольвенты зубчатой передачи внешнего зацепления

Исходные данные для открытой зубчатой передачи:

- числа зубьев колёс;

-модуль зубчатых колес;

- коэффициент высоты головки зуба;

- коэффициент радиального зазора;

- угол профиля исходного контура.

Минимальное число зубьев:

Коэффициентов смещения и исходного контура.

Коэффициенты смещения и должны соответствовать условию: (При отсутствии подрезания зубьев.)

;

и определяем по формуле:

;

Выбираем из таблиц коэффициенты смещения и :

Угол зацепления :

По таблице эвольвентных функций находим .

Радиусы делительных окружностей:

Радиусы основных окружностей:

Радиусы начальных окружностей:

Коэффициенты воспринимаемого смещения:

Коэффициент уравнительного смещения:

Межосевое расстояние передачи.

Радиусы окружностей впадин.

Радиусы окружностей вершин:

Высота зубьев колес:

Окружной делительный шаг:

Угловой шаг.

Толщины зубьев по окружности вершин:

Толщины зубьев по дуге делительной окружности:

Толщины зубьев по основным окружностям:

;

.

Толщины зубьев по начальным окружностям:

Радиусы кривизны эвольвент в нижних точках активных профилей:

;

Радиусы кривизны эвольвент в граничных точках активных профилей:

Коэффициент перекрытия:

Проверка подрезания зубьев:

;

Т.к. и , подрезание отсутствует.

Проверка отсутствия интерференции зубьев:

и .Т.к. и , то интерференция зубьев отсутствует.

Проверка плавности работы передачи:

. Т.к. , то обеспечивается достаточная плавность.

Проверка заострения зубьев:

и

Т.к. , то заострение зубьев отсутствует.

При вычерчивании картины зацепления профилей используют длину шага между зубьями по делительным окружностям, равную , основного шага по линии зацепления , равную точки контакта профилей расположены на линии зацепления .

В точках изображают пунктиром профили зубьев в момент начала и в момент окончания зацепления зубьев.

Пользуясь схемой передачи, вычерченной в масштабе длин, измеряют длины отрезков и рассчитывают коэффициенты перекрытия и удельного скольжения.

Чертеж зацепления построен в масштабе

3.2 Геометрический синтез планетарного механизма

По заданному передаточному отношению и числу сателлитов требуется определить числа зубьев колес , исходя из условий соосности, сборки и соседства сателлитов, а также отсутствия подрезания и интерференции зубьев.

Используем формулу Виллиса:

Из условия соосности колес имеем:

.

Принимаем (при других значениях не будет выполняться условие сборки) и находим:

; .

Условие сборки:

, где - любое целое число.

- условие выполняется т.к. - целое число.

Условие соседства сателлитов:

- условие выполняется. Т.к. и , то подрезания и интерференции зубьев не будет (в случае колес без смещения).

Радиусы делительных окружностей:

.

Чертеж планетарного механизма зацепления построен в масштабе

4 Синтез кулачкового механизма

4.1 Задачи синтеза кулачкового механизма

Задачами синтеза кулачкового механизма являются:

1. Определение основных размеров механизма из условия ограниченности угла давления ;

2. Построение профиля кулачка, обеспечивающего заданный закон движения толкателя.

4.2 Определение кинематических характеристик

Фазовые углы поворота кулачка:

Аналог ускорения , аналог скорости и перемещение толкателя определяем аналитически для заданных законов движения. На фазе удаления закон №3, на фазе возвращения №1.

№3 удаление - ;

№1 возвращение - ;

Выбираем масштабы:

Данные, полученные в результате вычислений, занесем в таблицу 4.1.

Таблица 4.1 Фаза удаления

I

i

Si,мм

S`,мм

S``,мм

1

0

0

0

0,0175

2

12

1,176

0,189

0,014

3

24

4,368

0,336

0,0105

4

36

9,072

0,441

0,007

5

48

14,784

0,504

0,0035

6

60

21

0,525

0

7

72

27,216

0,504

-0,0035

8

84

32,928

0,441

-0,007

9

96

37,632

0,336

-0,0105

10

108

40,824

0,189

-0,014

11

120

42

0

-0,0175

Фаза возвращения.

12

0

0

0

-0,0729

13

8

2,33

-0,583

-0,0729

14

16

7,00

-0,583

0

15

24

11,67

-0,583

0

16

32

16,33

-0,583

0

17

40

21,00

-0,583

0

18

48

25,67

-0,583

0

19

56

30,33

-0,583

0

20

64

35,00

-0,583

0

21

72

39,67

-0,583

0,0729

22

80

42,00

0

0,0729

4.3 Определение основных размеров

Определим основные размеры Ro и е кулачкового механизма по условию ограничения угла давления только на фазе удаления, так как высшая пара имеет силовое замыкание. Значения находим из диаграммы.

4.4 Построение профиля кулачка

Выбираем масштабный коэффициент: (1.5:1) по полученным значениям Ri и ?i строим центровой профиль кулачка. Для этого в масштабе проводим окружность радиусами е=29,25 мм; Ro=68,1 мм. Касательно к окружности радиусом е слева проводим линию движения толкателя уу. Соединив точку пересечения направляющей уу с окружностью радиусом R0 (точка В0) с центром вращения кулачка (О1), соответствующий началу удаления. От этого радиуса в направлении, противоположном вращению кулачка, отложим полярные углы ?i, на сторонах которых в масштабе отложим радиусы-векторы Ri. Соединив плавной кривой, концы радиус-векторов, получим центровой профиль кулачка. Действительный профиль кулачка найдем как эквидистантою кривую, отстоящего от центрового профиля на расстоянии, равном радиусу ролика. Примем радиус ролика r=27мм.

4.5 Расчет коэффициента жесткости пружины

Для расчета выбираем фазу возвращения, так как на этой фазе аналог ускорения толкателя имеет большее значение, чем на фазе удаления. Для закона изменения ускорения:

Предварительное натяжение:

Предварительное натяжение пружины:

[1] стр. 69

Сила инерции толкателя:

[1] стр. 69

Из графика

Жесткость вычисляем по формуле:

[1] стр. 69

Заключение

В результате выполнения курсовой работы мы закрепили и обобщили знания и навыки, полученные при изучении дисциплины, научились применять на практике теорию курса (кинематику, динамику, синтез эвольвентного зацепления и синтез кулачкового механизма).

Выполняя курсовой проект по теории машин и механизмов, овладел навыками использования общих методов проектирования и исследования механизмов. Также овладел методами определения кинематических параметров механизмов, оценки сил, что действуют на отдельные звенья механизма, научился творчески оценивать сконструированный механизм с точки зрения его назначения - обеспечивать необходимые параметры движения звена.

Список использованных источников

Попов С.А. Курсовое проектирование по теории механизмов и механике машин. - М.: Высшая школа, 1986.

Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. - М.: Высшая школа, 1999.

Марголин Ш.Ф. Теория механизмов и машин. - Мин.: Высшая школа, 1968.

Курсовое проектирование по теории механизмов и машин. / Под ред. Девойно Г.Н. - Мин.: Высшая школа, 1986.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.