реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Метрологические измерения

Классификация погрешностей измерения

Погрешности измерения классифицируются следующим образом.

По форме представления информации погрешности делятся на:

- абсолютные

- относительные

- приведенные.

Абсолютная погрешность измерений ? выражаемая в единицах измеряемой величины, представляется разностью между измеренным и истинным (действительным) значением измеряемой величины ? = xизм-хп(д)

Абсолютная погрешность средства измерений соответствует указанному определению, но для меры и измерительного прибора имеет различный смысл. Абсолютная погрешность меры - разность между номинальным значением меры и истинным (действительным) значением воспроизводимой ею величины. Абсолютная погрешность измерительного прибора представляется разностью между показанием прибора и истинным (действительным) значением измеряемой величины определяемое по отсчётному устройству.

Относительная погрешность ? представляется отношением абсолютной погрешности к истинному (действительному) значению измеряемой величины ?= ?/ хп(д). Допускается в уравнении вместо хп(д) пользоваться показаниями измерительного прибора. Обычно относительная погрешность выражается в процентах.

Приведённая погрешность ? (измерительного) прибора - отношение абсолютной погрешности к нормирующему значению хп ? =?/ хп

Нормирующее значение в зависимости от типа измерительного прибора принимается равным верхнему пределу измерений (в случае, если нижний предел - нулевое значение односторонней шкалы прибора)

Большинство измерительных приборов представляют собой совокупность измерительных преобразователей и, естественно, сигналы измерительной информации на выходе и на входе средства измерений могут не совпадать как по значению так и по природе физической величины (в датчиках). Соотношение между входными и выходными сигналами называется функцией преобразования средства измерений. Для датчиков функция преобразования является основной метрологической характеристикой. Функция преобразования может быть представлена формулой, таблицей, графиком (рис. 1)

где x - значение величины на входе; y - значение величины на входе средства измерений;

Для данного типа средства измерений (измерительного преобразователя) т.е. для множества однотипных средств измерений, функция преобразования является номинальной (действительной) характеристикой. Реальная функция преобразования конкретного измерительного преобразователя в большей или меньшей мере отличается от номинальной. Поэтому в технической документации на средства измерений обычно устанавливается область допустимых отклонений реальной функции преобразования от номинальной. Средство измерения с допускаемыми отклонениями функции преобразования метрологически исправным.

Если на входе прибора сигнал х1 (рис 1а), то на выходе измеренное значение у1, а номинальное (действительное) значение ун. Очевидно, абсолютная погрешность измерения по выходу будет ?y = y1-yн. Таким же образом можно определить в соответствии с реальной и номинальной функциями преобразовании абсолютную погрешность при других значениях входного сигнала и построить зависимость изменения абсолютной погрешности преобразователя (по входу) в зависимости от значений входного сигнала. Если номинальная функция преобразования линейна, а реальная нелинейна, то зависимость погрешности по выходу имеет вид кривой, показанной на рисунке 1б. т.е. эта зависимость в принятом масштабе «повторяет» реальную функцию преобразования.

Иногда используют понятие «абсолютная погрешность средства измерения по входу», которая представляется разностью между значением величины на входе средства измерения и её действительными значениями на входе (рис1а) ?x = x1-xн Для линейного преобразования погрешность по входу можно записать в виде ?y = y1-кн x1 где кн =tg? - угловой коэффициент, называемый коэффициентом преобразования. Тогда погрешность по входу будет иметь вид ?x = кн-1 y1-x1. В общем случае ?y = y-fн(x), где fн(x) - номинальная (действительная) функция преобразования; y - измеренное значение сигнала. ?x = fн-1(x) - x где fн-1(y) - функция обратного преобразования, приводящая к значению сигнала на входе хн (рис1а), x - измеренное (реальное) значение сигнала на входе.

2. По характеру изменения результатов при повторных измерениях погрешности разделяются на: систематические, случайные. Систематическими называются погрешности которые при повторных измерениях остаются постоянными или изменяются закономерно, обычно прогрессируя. Постоянные систематические погрешности свидетельствуют о высоких или недостаточных показателях метрологической надёжности применяемого средства измерения и могут быть устранены (учтены) предусмотренными аппаратурными методами коррекции или введением поправок в результаты измерений. Одной из распространённой систематической погрешностей является погрешность градуировки. Данная погрешность легко выявляется, составляется таблица поправок которая используется при определении результатов измерений.

Систематические погрешности могут вызываться недостаточно точным исполнением принципа и метода измерения (например инерционностью механизмов измерения)

Постоянные статистические погрешности в случаях, когда они известны, и значения их в виде поправок указаны в нормально-механистической документациина средство измерения, учитывается в каждом из результатов измерений. При этом поправка на систематическую погрешность, вводимая в результат измерений, равная её по абсолютному значению и противоположна по знаку. Закономерно изменяющиеся систематические погрешности, возрастающие со временем эксплуатации средства измерения, как правило, квазимонотонно, называются прогрессирующими систематическими погрешностями. Они вызываются процессами старения узлов средства измерения. Вследствие этого контролируемые и неконтролируемые параметры (характеристики) измерительных приборов изменяются и соответственно возрастают инструментальные погрешности средства измерений, по рассматриваемой классификационной группе, относятся к систематическим. Старению подвержены и меры, например, концевые меры длины, гири. Это происходит из-за постепенного стирания поверхностей, окисления и др процессов.

В каждом виде измерений, где применяются соответствующие средства измерений, изучаются как источники и значения систематических погрешностей, так и способы их устранения.

Систематические погрешности наиболее просто выявить путём сопоставления результатов измерений физической величины, проведенных с помощью исследуемого средства измерения, и с помощью однородного более точного (рис. 2)

По результатам измерений проведённых по схеме 2 систематическая погрешность может быть определена как ?с = y-yэ (?с - систематическая, y- изучаемый yэ - эталонный)

Случайными называются погрешности, изменяющиеся по повторным измерениям непредвиденно, случайным образом. В процессе любого измерения присутствуют многочисленные влияющие величины (температура, давление) учесть которые практически невозможно, но их совместное воздействие (случайная комбинация воздействий) сказывается на получении результатов измерений, а следовательно, и на погрешности измерений. В связи с этим до проведения измерений предсказать значение случайной погрешности невозможно. Случайная погрешность в отличии от систематической не может быть исключена из результата измерений, но её влияние можно уменьшить с помощью многократных измерений искомой величины с последующим определением характеристик случайной погрешности методами математической статики. Полученные при многократных измерениях результаты рассматриваются как случайные величины. Следует отметить, что после исключения (введения поправки) систематической погрешности выделить её не исключённую составляющую при обычных (рабочих) измерениях весьма затруднительно. Эти составляющие при измерениях часто проявляются со случайными погрешностями вместе со случайными погрешностями, поэтому каждый результат при этом рассматривается как случайная величина. Используя ещё более точное средство измерения при выявлении систематической погрешности, можно подвести её неисключённую составляющую до уровня «шума» который если и регистрируется, та как случайная погрешность.

К случайным погрешностям в большинстве случаев относится и так называемые грубые погрешности (промахи), характерные значительным превышением над ожидаемыми (указанной в нормативно-технической документации на средство измерения) погрешностью с учётом данных условий измерений. Источником грубой погрешности чаще всего является неправильный отсчёт показаний прибора. Иногда они могут возникать при скачкообразном изменении условий измерений (например внезапное изменение напряжения питающей сети). При статистическом анализе промахи могут быть выявлены и соответствующие им результаты исключены.

Близость к нулю случайных погрешностей измерений называется сходимостью измерений.

3. По причине возникновения погрешности разделяются на инструментальные, методические и субъективные. Инструментальная (приборная, аппаратная) погрешность - погрешность средства измерения определяемая несовершенством средств измерений, неидеальной реализацией принципа действия, конструктивно-технической особенностью, средства измерения и влиянием внешних условий. К инструментальным погрешностям обычно такие относят помехи на входе средства измерения, вызываемые её подключением к объекту измерений. Инструментальная погрешность является одной из наиболее ощутимых составляющих погрешности, причём некоторые из них являются систематическими, другие - случайными.

Методическая погрешность - погрешность обусловленная несовершенством, недостатками применённого в средстве измерения метода измерения и упрощении при построении конструкций средства измерения, в том числе математических зависимостей. К методическим погрешностям относится и невозможность идеального воспроизведения модели объекта измерений. В большинстве случаев эти погрешности относятся к систематическим.

Субъективная погрешность - возникает вследствие индивидуальных особенностей (степень внимательности, сосредоточённости, подготовленности) операторов, производящих измерения. Эти погрешности практически отсутствуют при использовании автоматических или автоматизированных средств измерений. В большинстве случаев субъективные погрешности относятся к случайным, но некоторые из них, относятся к личности оператора, могут быть систематическими.

4 По условиям проведения измерений погрешности средств измерений разделяются на основные, дополнительные. Основной называется погрешность, соответствующая нормальным условиям применения средства измерений. Эти условия устанавливаются нормативно-техническими документами на виды средств измерений или отдельные их виды. Установление условий применения и особенно нормальных условий является весьма важным для объяснения единообразия метрологических характеристик средств измерений. Выделение основной погрешности, соответствующей некоторым стандартным условиям применения, является одним из важнейших факторов обеспечения единства измерения.

Дополнительная погрешность - погрешность, возникающая вследствие отклонения одной из влияющих величин от нормального значения. Принято различать дополнительные погрешности по отдельным влияющим величинам (например дополнительная температурная погрешность и др.)

Классы точности средств измерений

Классом точности называется обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительной погрешностей.

Для установления классов точности средств измерений применяются общие правила, в соответствии с которыми производится количественная оценка гарантированных границ погрешности средств измерений данного конкретного типа. В РФ такие правила содержатся в ГОСТ 8.401-80 «классы точности средств измерений. Общие требования»

Формы представления погрешностей измерений при установлении классов точности.

Форма представления класса точности средства измерений определяется пределами допускаемой основной погрешности измерений определяется пределами допускаемой основной погрешности измерений. В ряде случаев вместе с основной нормируются пределы допускаемой дополнительной погрешности, форма представления которой может отличатся от формы представления основной погрешности измерений.

Пределы допускаемых погрешностей измерений выражаются границами (верхней и нижней) абсолютной погрешности средства измерений. Сама форма представления класса точности пределами допускаемой основной абсолютной погрешности применяется преимущественно для мер массы или длины, которые принято выражать в единицах массы или длины. Класс точности измеряемых приборов в большинстве случаев выражается пределами допускаемой основной приведенной или относительной погрешности. При этом основой для определения формы представления класса точности прибора является характер изменения основной абсолютной погрешности средств измерений.

1. Если основная абсолютная погрешность имеет аддитивный характер, т.е. границы погрешностей измерительного прибора не изменяются в пределах диапазона измерений рис. 3

то класс точности представляется пределами допускаемой приведённой погрешности - пределы допускаемой основной абсолютной погрешности прибора; Р - отвлечённое положительное числ, выбираемое из ряда чисел, указанных ниже;!! - нормирующие значение, выраженное в единицах абсолютной погрешности.

2. Если основная абсолютная погрешность имеет мультипликативный характер, т.е. границы погрешностей измерительного прибора линейно изменяются в пределах диапазона измерений (рис 4)! то класс точности представляется пределами допускаемой относительной погрешности в виде где - пределы допускаемой основной абсолютной погрешности прибора показания прибора (без учёта знака измеренной величины); q - отвлечённое положительное число.

3. Если основная относительная погрешность имеет и аддитивную и мультипликативную составляющие, то класс точности представляется допускаемой относительной погрешностью в виде

где - отвлечённые положительные числа. Положительные числа P, q, c, d выбираются из установленного ряда 1*10n; 1,5*10n; 2*10n; 2.5*10n; 4*10n; 5*10n; 6*10n; (n= 1; 0; - 1; - 2; - 3 и т.д.)

На практике редко случается, когда абсолютная погрешность чисто аддитивная или чисто мультипликативная. Поэтому класс точности устанавливается когда либо мультипликативной, либо аддитивной погрешностью можно пренебречь.

При установлении класса точности по приведённой погрешности средства измерения (*) нормирующие значение XN выбирается с учётом следующих вариантов, определяемых видом и характером шкалы измерительного прибора. Если прибор имеет равномерную шкалу и нулевая отметка находится на левом краю шкалы или вне её, то за нормирующее значение XN принимают конечное (правое) значение шкалы. Если же нулевая отметка находится внутри шкалы, то нормирующие значение принимается равным сумме конечных значений шкалы, без учёта знаков. В некоторых случаях прибор предназначается для измерения отклонения измеряемой величины от её номинального значения.

Обозначение классов точности

Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности средства измерения то класс точности в документации и на средство измерения обозначается прописными буквами римского алфавита. Классам точности, которым соответствует меньшие пределы допускаемых погрешностей присваиваются буквы, находящиеся ближе к началу алфавита. Подобным же образом обозначаются классы точности средств измерения, для которых пределы допускаемых погрешностей установлены в виде формулы, таблицы, графика, не соответствует формулам (*), (**), (***). Примеры обозначения классов точности в документации и на средстве измерения приведены в таблице

Обозначение класса точности обычно не наносится на малогабаритные высокоточные меры (например, эталонные разновесы) или на те средства, для которых классы точности не устанавливаются. Так для многих типов радиоизмерительных приборов (генераторы высокочастотных и низкочастотных колебаний осциллографы) в техническом описании, паспорте, технических условиях указываются формулы, позволяющие определить систематическую, случайную или общую погрешность в соответствующем диапазоне измерений с учётом влияющих величин и др. На приборе класс точности в этих случаях не указывается (не устанавливается).

Пределы допускаемой дополнительной погрешности непосредственно не устанавливаются при установлении класса точности средства измерения, но в соответствии с ГОСТ 8.009-84 и ГОСТ 8.401-80 предусматривается их нормирование и указание в технической документации:

- в виде постоянного значения влияющей величины (в пределах рабочих условий средства измерений) или в виде постоянных значений по интервалам влияющей величины в рабочей области;

- путём указания отношения предела допускаемой дополнительной погрешности, соответствующего интервалу значений влияющей величины в интервале рабочих условий средства измерения к этому интервалу.

- Путём указания функциональной зависимости пределов допускаемых отклонений от номинальной функции влияния.

Пределы допускаемой дополнительной погрешности устанавливают обычно в виде дольного (крайнего) значения допускаемой основной погрешности средства измерения.

Пределы допускаемых погрешностей разрешается выражать не более чем двумя значащими цифрами, причём округление погрешности при установлении пределов не должно допускать 5%.

Государственная служба обеспечения единства измерений

О законе РФ «об обеспечении единства измерений».

В России до перехода к рыночной экономике обеспечение единства измерения осуществлялась и регулировалась государством централизированно с помощью метрологических государственных и ведомственных центров, деятельность которых регламентировалась нормативно-техническими документами (ГОСТ, ОСТ и др.)

В результате все средства измерений в СССр находились под государственным надзором. Это определяло в целом достаточно высокий уровень обеспечения единства измерений, хотя и требовало больших затрат. В новых экономических условиях было принято решение о переходе системе измерений в России (российской системы измерений) на законодательный принцип управления. В апреле 1993 г. был принят закон Российской «об обеспечении единства измерений». В соответствии с законом государственное управление деятельностью по обеспечению единства измерений в стране осуществляет комитет по стандартизации и сертификации и метрологии (Госстандарт России). В компетенции Госстандарта России относится: 1) межрегиональная и межотраслевая координация деятельности по обеспечению единства измерений; 2) Представление правительству РФ предложений по единицам величин, допускаемых к определению; 3) установление правил создания, утверждения, хранения и применения эталонов единиц величин; 4) Определение общих метрологических требований к средствам, методам и результатам измерений; 5) Осуществление государственного метрологического контроля и надзора; 6) Осуществление контроля за соблюдением условий международных договоров РФ о признании результатов испытаний и проверки средств измерений; 7) Руководство деятельностью Государственной метрологической служб и иных государственных служб в области обеспечения единства измерений; 8) Участие в деятельности международных организаций по вопросам обеспечения единства измерений; Кроме того к числу функций государственного управления относятся: - утверждение документов по обеспечению единства измерений; - утверждение государственных эталонов (находятся в ведении Госстандарта РФ); - установление межпроверочных интервалов средств измерений; - установление порядка разработки и аттестации методик выполнения измерений; - организация деятельности Государственной метрологической службы и иных государственных служб обеспечения измерений; - аккредитация государственных центров испытаний средств измерений; - утверждение типа средств измерений; - ведение государственного реестра средств измерений, в которых включаются средства измерений, прошедшие испытания с последующим утверждением типа; - утверждение перечней средств измерений, подлежащих проверке; - организация деятельности и аккредитация метрологических служб юридических лиц на право проведения калибровки средств измерений.

Это далеко не полный перечень функций государственного управления работами по обеспечению единства измерений. Некоторые из этих функций будут рассмотрены подробней. Государственный метрологический контроль и надзор распространяется на здравоохранение, охрану окружающей среды, обеспечение безопасности труда, торговые операции, обеспечение обороны государства, испытания и контроль качества продукции на установленные соответствия ГОСТ-Р, банковские, налоговые, почтовые, банковские операции и др.

В соответствии с законом области метрологической деятельности четко разделены на сферу государственного контроля и надзора и сферу добровольного метрологического контроля и надзора, в которой взаимоотношения складываются на основе рыночных отношений. Так, деятельность юридических (в том числе негосударственных) и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений может осуществляться в установленном порядке. Выдача лицензий на право проведения указанных работ юридическими и физическими лицами производится органами Госстандарта РФ после проверки наличия у этих лиц необходимых для выполнения метрологической деятельности условий (сил и средств), а также соблюдения ими метрологических правил и норм. Таким образом, метрологическая деятельность распространена и на рыночную, негосударственную сферу.

Важнейшая составляющая деятельности по обеспечению единообразия средств измерений, какой является обязательная проверка средств измерений, теперь распространяется только на те средства измерений, которые подлежат государственному метрологическому контролю и надзору. Право на проведение проверки средств измерений по решению Госстандарта РФ может быть представлено (после аккредитации) метрологическим службам юридических лиц. Органы государственной метрологической службы контролирующей качество поверочной деятельности.

Средства измерения, не подлежащие проверке, могут подвергаться калибровке при выпуске из производства или ремонта, при ввозе по импорту, при эксплуатации, практике и продаже. Калибровка средств измерений, производится метрологическими службами юридических лиц с использованием эталонов, соподчинённых государственным эталонам единиц величин. Соответствующие метрологические службы юридических лиц, в том числе частного предпринимательские, могут быть аккредитованы на право проведения калибровочных работ. При этом аккредитированным метрологическим органом физических лиц предоставляется право выдавать сертификаты о калибровке (от имени организации которые их аккредитовали).

Законом определено, что государственный метрологический контроль и надзор осуществляется главным государственным инспекторами и государственными инспекторами по обеспечению единства измерений. Проверка средств измерений проводится государственными инспекторами, аттестованными в качестве проверителей. Государственные инспекторы имеют право, в пределах возможных на них должностных обязанностей, посещать предприятия, организации, где эксплуатируются, производятся, ремонтируются, продаются, хранятся средства измерений, независимо от форм собственности этих предприятий (организаций). При этом государственные инспекторы имеют право проверить состояние и условия применения средств измерений, а также аттестованных методик для проведения измерений и т.д.

Определим (в соответствии с законом) виды государственного метрологического контроля и надзора раздельно.

Установлены три вида государственного метрологического контроля: 1) утверждение типа средств измерений; 2) проверка средств измерений (в том числе эталонов); 3) лицензирование деятельности юридических и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений.

Виды государственного метрологического надзора: 1) за выпуском, состоянием и применением средств измерений, аттестированных методик для выполнения измерений, соблюдением метрологических правил и норм; 2) за количеством товаров, отчуждаемых при торговых операциях; 3) за количеством фасованных товаров в упаковках любого вида., при их расфасовке и продаже.

Метрологический контроль и надзор распространяется в основном на государственные сферы. В сферах свободных рыночных отношений вопросы обеспечения единства измерений упорядочивает проведение работ по сертификации средств измерений, поскольку сертификат соответствия, подтверждающий технический уровень и качество изготовления средств измерений, выдаётся метрологическим органом, аккредитованным и контролируемым государственной метрологической службой. Вместе с тем, следует иметь в виду, что сертификация средств измерений, как добровольная процедура, по выбору сертифицируемых параметров, объекту их проверки, может быть определятся заявителем.

Калибровка средств измерения является добровольной процедурой. Но к юридическим лицам, проводящим калибровку средств измерений, предъявляется большинство требований, которым должны удовлетворять государственные метрологические органы, проводящие проверку средств измерений, в частности, требования к размерам производственных помещений, квалификации персонала, наличию и метрологической исправности эталонов, а также нормативно-технических документов.

Принятие закона «об обеспечений единства измерений» способствует адаптации Российской системы измерений к системам измерений других стран через взаимное признание порядка аккредитации.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.