реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Метрологические измерения

Метрологические измерения

Введение

Измерение - один из важнейших путей познания природы человека. Они играют значительную роль в современном обществе. Наука, техника и промышленность не могут существовать без измерений. Каждую сек в мире производится 1 млрд. измерительных операции результаты которых используются для обеспечения технического уровня и необходимого качества продукта, безопасности работы транспорта и т.д. Практически нет ни одной сферы деятельности где бы не использовались результаты измерений. Диапазоны измеряемых величин постоянно растут. Например длина измеряется 10-10-10-17 метра, температура 0,5-106 К, сопротивление 10-26-1016 Ом, сила тока 10-16-104 А. С ростом диапазона измеряемых величин возрастает и сложность измерения. Измерения по сути своей перестают быть одноактивным действием, превращают сложную процедуру подготовки эксперимента, интерпретации измеренной информации. В этом случае следует говорить об измерительных технологиях понимающихся как последовательность действий направленных на получение измерительной информации. Другой фактор, подтверждающий фактор измерений - их значимость. Основой любой формы управления, анализа, планирования, контроля и регулирования является достоверная исходная информация, которая может быть получена путём измерения физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений может обеспечить правильность применяемых решений.

Современный уровень науки и техники позволяет выполнять многочисленные и точные измерения однако затраты на них равны затратам на исполнительные операции. Важной задачей Метрологии как науки является создание эталонов физических величин имеющих диапазон необходимый для современной науки и техники. Эти эталоны постоянно совершенствуются с учётом последних открытий науки. Стоимость поддержания мировой системы эталонов высока. Сотрудничество с зарубежными странами совместная разработка научных программ Её высокая точность, качество и достоверность единообразия принципов и способов оценки и точность измерения имеет огромное значение. Важную роль в использовании достижений в метрологии в промышленности играют нормативные документы ССМ. Поэтому в процессе изучения курса МСС будут активно использовать последние нормативные материалы госстандартов.

Основные термины

Основные термины сформулированы в ряде действующих нормативных документов (1970 г. введён ГОСТ 16263-70 «Метрология. Термины и определения»). Дальнейшее развитие Метрологии вызвала необходимое уточнения терминов и учёта при этом материалов изданных за рубежом (международный терминологический словарь). 1994 г. введён новый рекомендательный документ «Рекомендации. Метрология. Основные термины и определения», разработан НПО в НИИ Метрологии Д.М. Менделеева.

Метрология - наука об измерениях, метода и средствах обеспечения их единства и требования точности. (Метрология не только наука, но и область практической деятельности.)

Физическая величина - одно из свойств физического объекта общее в качественном отношении для многих физических объектов, но в количественном отношении разная для каждого и них.

Измерение - совокупность операций выполняемых с помощью технического средства хранящего единицу величины, позволяющая сопоставить измеренную величину её единицей и получить значение измеряемой величины.

Единство измерений - состояние измерений при котором их результаты выражены в законных единицах, а погрешности известны с определённой вероятностью и не выходят из дозволенных.

Первым условием обеспечения единства измерений является преставление результатов единицах которые были бы одними и теме же всюду где производится измерения.

Второе условие: необходимость выполнять их так, чтобы «сопровождающие» измерения погрешность их результатов были бы извесны и не выходили бы с заданной вероятностью за установленные пределы.

Погрешность - отклонение результатов измерений от истинного значения измеряемой величины. ?x = хизм - хдейст. Говорят не о погрешности измерения, а о точности. Качественно точность измерения характеризуется близостью к нулю результатов измерения.

Классификация измерений

Измерение как экспериментальные процедуры определяют определённые значения определённых величин разнообразны, что объясняется множеством известных величин, различных характеров изменения их во времени, различными требованиями.

По способу получения информации:

прямые измерения, при которых искомые значения физической величины определяют путём сравнения с мерой этой величины (линейка, вольтметр)

- косвенные. При которых искомые значения физической величины определяет на основании результатов других физических величин связанных с искомой величиной некоторых заранее известных функциональных зависимостей (измерение мощности тока)

- совокупные измерения, при которых проводят одновременно измерения нескольких однородных величин с определённой искомой величины путем решения системы уравнения.

- совместные измерения при которых производятся измерения двух или нескольких неоднородных физических величин с целью нахождения зависимости между ними.

Как при совокупных так и при совместных измерений искомые значения находят путём решения уравнений. Поэтому эти методы близки друг к другу и различаются только потому, что при совокупных однородных величины, у совместимы неоднородные. Если провести разделения операций проводимых при совокупных измерениях, то они приводят к прямым, однородные к косвенным.

По характеру измерения величин в процессе измерения:

- Статистические измерения, которые проводятся при практическом постоянстве измеряемой величины (статистический режим).

- Динамическое измерения. Величины изменяются во времени (динамический режим).

К статистическим относятся параметры которые в процессе наблюдения не изменяются во времени или рассматриваются неизменяемыми (размеры обрабатываемой детали, эл-ое напряж)

Динамический режим возникает при измерении не изменяющихся величин непосредственно после включения средства измерения в следствии её инерционности. Кроме того, в современных технологический и др процессах величины могут претерпевать те или иные изменения. К ним относятся измерения параметров периодических и апериодических сигналов изменения которых можно описать только вероятностными закономерностями. Характерными для «чистых» динамических измерениях является то, что результат измерений изменяющийся во времени физической величины представляется совокупностью её значений с указанием момента времени которым соответствует эти измерения.

В других случаях результат динамического измерения может быть представлен некоторым усреднённым числовым значением

Статистические измерения связанны с определением характеристик случайных процессов, шумовых сигналов и т.д.

По количеству измерительной информации:

1. Однократные. При которых число измерений равно числу измеряемых величин. Если измеряется одна величина, то измеряют один раз. При этом иметь ввиду, что руководствоваться одним опытом при измерении той или иной величины не всегда оправдано. Во многих случаях рекомендуется выполнить не менее двух-трёх измерений которые позволяют избежать грубых ошибок - промахов. При этом результат измерений, т.е. значение физической величины получены при измерении, есть среднее из этих двух-трёх расчётов.

2. Многократные. При которых число измерений больше числа измеряемых величин в n/m раз, где n - число измерений каждой величины, m - число измеряемых величин. Обычно для многократных измерений n>=3. Многократные изменения проводят с целью уменьшения влияний случайных составляющих погрешностей измерения.

По отношению к основным единицам измерения:

1) абсолютные. При которых результат измерения основывается на прямых измерениях одной или нескольких основных величин, и (или) использовании физических констант.

2) Относительные. При которых производятся измерения отношение измеряемой величины к некоторой однородной величине играющей роль единицы или измерения величины по отношению к однородной величине принимаемой за исходную.

Основные характеристики измерений.

К основным характеристикам измерений относятся:

1. Применяемые при тех или измерениях принципы измерения.

2. Методы измерения.

3. Точность измерения.

1. Принципы измерений - физическое явление положенное в основу измерения. Рассмотрим некоторые широко распространённые явления:

а) пьезоэлектрический эффект, заключается в возникновении ЭДС на грани некоторых кристаллов (кварц) под действием внешних сил (сжатия, растяжения). Наибольшее применение для измерения нашли Кварц и пьезокерамика, обладающая достаточно высокой механической прочностью и температурной зависимостью. Пьезоэлектрический эффект обратим: ЭДС приложенная к пьезокристаллу вызывает механическое напряжение на их поверхности. Измерительно-преобразовательный датчик на пьезоэлектрическом эффекте используют для динамических измерений.

б) Термодинамический эффект, широко применяется для измерения температуры. Два вида использования: 1) используют свойства изменения R металлов и полупроводников при изменении температуры (медь, платина), соответствующий измерительный преобразователь называется терморезистором. Измерительные элементы п.п. преобразователя термисторы. С увеличением температуры R уменьшается, а термометра увеличивается. Др способами использования термоэффекта является термоЭДС возникающая в термопаре.

г) Фотоэлектрический эффект. Для измерений используется внешний и внутренний фотоэффекты. Внешний возникает в вакуумированном баллоне, имеющим анод и фотокатод. При освещении фотокатода в нём под влиянием фотонов света эмитируются электроны. В случае наличия между анодом и фотокатодом электрического напряжения эмитируемые электроны образуют эклектический ток, называемый фототоком. Внутренний возникает при освещении слоя между некоторым полупроводниками и металлами. В этом случае возбуждается ЭДС у ряда полупроводников под влиянием светового излучения, изменяется эклектическое сопротивление. Иногда это называется фоторезистивным эффектом, а устройство фоторезистор. «Темновое», при отсутствии света, сопротивление R достаточно большое 108 Ом, при освещении оно может уменьшаться до 105 Ом. Фоторезисторы обладают высокой чувствительностью.

2. Методы измерения. Метод измерения - совокупность используемых способов сравнений измеряемой величины с её единицей в соответствии с выбранной (реализованной) принципов измерений. Все измерения делятся на методы непосредственной оценки и методы сравнения. Использование метода непосредственной оценки позволяет определить значение величины непосредственно по отчётному устройству показывающему средства измерения. Мера отражающая единицу измерения в измерении не участвует. Её роль в показе измерения играет шкала проградуированная при его производстве с помощью достаточно точных средств измерений. Метод сравнения с мерой предусматривает сравнение измеряемой величины с равной мерой. Методы сравнения обычно реализуются различными путями. К основным из них можно отнести: дифференциальный метод, нулевой метод, метод измерения замещением метод совпадений.

Дифференциальный - метод, при котором измеряемая величина сравнивается с однородной величиной имеющей известное значение, воспроизводимой мерой. Точность этого метода может быть высокой и определяется точностью величины воспроизводимой меры.

Нулевой - метод является частным случаем дифференциального метода, заключается в том, что результаты воздействия измерения измеряемой величины взаимно уравновешивается до нулевого показателя. Метод измерения замещением заключается в том, что измеряемая величина замещается мерой с известным значением величины. Метод совпадений заключается в том, что разность между измеряемой величиною и известной величиной измеряют используя совпадения отметок их шкал.

Понятие о точности

Точность измерения определяется близостью к нулю погрешности измерений, т.е. близость результатов измерений к истинному значению измеряемой величины. Но если погрешность измерений можно количественно выразить в единицах измеряемой величины или в отношении погрешности и к результатам измерения, то точность измерений количественно результат измерения определить нельзя. Поэтому не говорят о высокой, средней, низкой точности измерения в качественном отношении.

Классификация средств измерения

Средства измерений представляют собой техническое устройство, предназначенное для измерений имеющие в этих целях нормирования метрологические характеристики воспроизводящие и / или хранящие единицу физической величины. В отличие от средства измерения от других технических устройств является главным образом наличие меры и нормированных технической характеристики к средствам.

1. меры предназначенные для воспроизведения и / или хранения физической величины одного или нескольких заданных размеров и к мере относится меры, весовые меры, нормальные. Мера, воспроизводящая официальную величину одного размера, называются однозначными, воспроизводящая величина различных размеров - многозначных (миллиметровая линейка). Применяют также меры, наборы мер и магазины мер. Набор мер - комплект однородных мер разного размера, предназначаемых для применения в различных сочетаниях. Магазин мер - наборы мер, конструктивно объединённых в одно устройство в котором предусмотрено ручное или автоматизированное соединение в одно целое. К однозначным мерам относятся стандартные образцы и стандартные вещества. Стандартные образцы представляют собой специально оформленное тело, установленного по результатам метрологической аттестации значение физической величины которые характеризуют свойства или состав материала вещества.

Определение погрешности результатов измерений

Любые измерения лишь тогда приобретают какую-либо значимость когда из результатом можно доверять и и проводятся со следующими различными целями:

1. когда надо удостовериться в том, что производимые (приобретаемая) продукция соответствует заданной качественными и количественными свойствами.

2. Когда необходимо определить неизвестное свойство объекта (физической системы, процессов, явления) измерения.

3. Когда необходимо наблюдать за количественными и качественными измерениями объекта измерения.

Каждый объект измерения обладает некоторыми количеством свойств (признаков) для определённости которых можно судить о его содержании (состоянии). Какую бы цель не преследовали бы измерения, главным всегда остается оценка по их результатам испытанного значения величины (как правило физической), которая рассматривается как идеальная в качественном и количественном отношением её характеристик. Истинное значение величины с философской точки зрения сопоставляется абсолютной истине, т.е. оно может быть определено только в результате бесконечного процесса измерений, соответствующий бесконечным процессом совершенствования методов и средств измерения. Т.о. мы в состоянии наблюдать истинную величину. Например длину обрабатываемой детали, но определить её точное значение с помощью измерений е можем. Вместе с тем, измерение целесообразно только тогда, если измеряемую величину можно сопастваить с некоторой известной величиной, мерой, эталоном и т.д. Поэтому для практического применения неизвестного истинному значению величины составляют действительное значение величины, это значение определяется экспериментально, приписывается измеряемой величине и рассматривается как величина, значение которой наиболее точно отражает данное измерительной задачи истинное значение измеряемой величины. Очевидно, истинное значение величины по своей природе является единственным в момент измерения. Действительным значением величины в зависимости методов средств используемых для его определения может иметь множество значений, сопоставляемых этому единственному. Погрешность результата измерений представляется отклонением результата измерений от истинной величины и её абсолютного значения которая равна разности между измеренными значениями. Поскольку истинное значение точно не известно, то также точно не известны и погрешности измерений. На этом основании иногда говорят о неопределённости погрешности измерений и предлагают заменить погрешность термином «неопределённость». На практике для определения погрешности измерения пользуются понятием действительного значения величины которому всегда приписывается определённое значение. Чем выше погрешность и метода средства измерения, с помощью которых определено действительное значение величины, тем увереннее оно может рассматриваться как близкое к истинному. Точность погрешности измерения определить невозможно, поэтому одной из задач метрологии является разработка методов оценки погрешности измерений с целью возможностей их уменьшения. При этом оценка погрешности чаще всего проводится применительно к определению абсолютного его значения выраженного в единицах измеряемой величины с помощью уравнения!!!! где - действительное значение измеряемой величины. Определение погрешности в виде (2) строго соответствует идеальной модели погрешности (1) является экспериментальной организации определения (1). В обоих случаях говорить о неопределённости погрешности измерения не корректно. Если при использовании средства измерения о действительных значениях измеряемой величины экспериментатор не осведомлён и т.о. затрудняется определить погрешность, то применяется процедуры % а производятся многократные измерения величины и находится среднее арифметическое значение результатов измерений. Оно и принимается за действительное значение измеряемой величины. После этого по (2) можно найти погрешность любого из приведённых измерений. Часто для определения действительного определения величины применяют более точное средство измерения (эталон).

Основные источники погрешностей измерений

До сих пор были рассмотрены погрешности результаты измерений в соответствии с ворожениями (1) и (2). В этих определения результат измерения зависит от многих факторов: 1) применение метода измерения 2) применение средства измерения. 3) условия проведения измерения (температуры, давления, влажности окружаемой среды) 4) способы обработки результатов измерения 5) квалификация операторов проводящих и организующих измерения.

Указанные факторы по-разному сказываются на отличия результата измерений от чистого значения измеряемой величины. Прежде всего всегда существует погрешность за счёт замены истинного величины, её отображением в виде действительного значения. Этот источник погрешности когда экспериментатор проводящий измерения задано измеряемое значение не рассматривают. Большинство измерений проводимые с помощью рабочих средств измерения относятся к указанному случаю. Измерения, результаты которых определяются по шкале измерительного прибора не требуют оценки как истинного, так и действительного значений измеряемой величины. Определённы по шкале результат измерений отличается от действительного результата на известную величину, равную погрешности средства измерения. Другим источником погрешности измерения непосредственно связана с погрешностью средств измерения являются особенности применяемого метода измерения (при измерении массы жидкости в резервуаре). На результат измерений будет сказывается отличия значения плотности жидкости от её номинальной плотности за счёт неутонченного измерения атмосферного давления, её температуры. Обычно любой применяемый метод измерения вносит ту или иную погрешность в результат измерений, если методика измерений этот источник погрешностей не учтён. Источником погрешности метода измерения часто является приближение принятые для величины в случае косвенных и совокупных измерений. Это приводит к наличию математической зависимости связывающей истинную величину с измеряемыми величинами. Во многих измерительных процессах основным источником погрешности является применяемое средство измерения, его несовершенство: искажение характерных признаков измеряемой величины (входного сигнала) поступающих на вход средства измерения в процессе преобразования или измерительных преобразований. При этом входная величина (выходной сигнал) содержат погрешности измерительных преобразований. Кроме того принцип действия положенный в основу средства измерения может быть неадекватен к требованию воспроизведения измеряемой величины. Например, в цифровых средствах измерения аналоговый входной сигнал преобразуется в дискретный, в результате чего исходная функция описывающая измеряемую величину заменяется некоторой совокупностью некоторых её мгновенных значений. Восстановление исходной функции осуществляется с помощью линейной интерпретацией между дискретными мгновенными значениями. Точное восстановление исходной функции при этом практически невозможно. Появляется погрешность метода, свойственного самому методу измерения. Т.о. методические погрешности могут быть независимыми от средства измерений и могут также определяться своим средством определения. В случае определения заранее неизвестных погрешностей методическая составляющая возникает в следствие неадекватности рассчитанных соотношений реальному содержания измеряемой величины. Таким измерением относятся измерения с требованиям высокой точности или измерения с получением их результата путём последующего расчёта. Например, при проведений косвенных совокупных измерений. В данном случае алгоритмы подсчёта для нахождения результатов измерения его погрешность могут в большей или меньшей мере учитывать возможности использования существующих методов для соответствующей оценки истинного значения измеряемой величины. Например, упрощённые методы обработки результатов измерений могут также привести к недостоверной их оценки.

Средства измерений в зависимости от точности принятых в его конструктивной реализации решений адекватных выбранному принципу измерений физической величины является источником инструментальной погрешности. Часто наиболее существенных среди всех других источников погрешность. Например в случае неравенства плеч коромысла весов измеряемая масса будет уравновешиваться набором гирь (даже самых точных) с погрешностью вызываемой неравенством плеч. Погрешность будет представлять в виде инструментальной погрешности (одинаково присутствующих при всех измерениях).

Источником погрешности измерения, иногда достаточно грубой, может являться недостаточная квалификация оператора, его слабая подготовленность к измерениям, иногда и невнимательность.

Классификация погрешностей измерений

Погрешность измерений классифицируются следующим образом:

- по форме представления информации: абсолютная, относительные, приведённые. Абсолютная выражаемая в единицах измерения величины представляется разностью между измеренным и истинным значением измеряемой величины. Абсолютная погрешность средства измерения соответствует указанному определению, но для меры и измерительного прибора имеет различный смысл. Абсолютная погрешность меры - разность между номинальным значением меры и истинным значением воспроизводимой ею величины. Абсолют погрешность измерительного прибора представляется разность между показаниями прибора и истинным значением измеряемой величины. Показание прибора - значение измеряемой величины, определяемое по его отчётному устройству.

Относительная погрешность предоставляется отношением абсолютной погрешности к истинному значению измеряемой величины Допускается вместо в уравнении пользоваться показаниями прибора. Обычно выражается в процентах. Приведённая погрешность измерения - отношение абсолютной погрешности к нормирующему значению величины. Нормирующее значение в зависимости от типа прибора принимается равной верхнему пределу измерения (в случае если нижний предел равен нулю).

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.