реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Автоматизация процесса подготовки шихты

· установившееся значение = 70 [].

б) При изменении влажности подаваемого в сушильный барабан песка на 15%:

· значение координаты времени Т = 30 [c];

· значение транспортного запаздывания = 1,5 [c];

· количество точек ординаты d = 16;

· установившееся значение = 73 [].

в) При изменении температуры поступающего в сушильный барабан песка на 15оС:

· значение координаты времени Т = 30 [c];

· значение транспортного запаздывания = 2 [c];

· количество точек ординаты d = 16;

· установившееся значение = 65 [].

Найдем передаточные функции методом Наслена используя переходные характеристики объекта по каналам управления и возмущения , : (1),

(2),

(3).

где - это передаточная функция изменения температуры сушки

при изменении положения регулирующего органа;

- это передаточная функция изменения температуры сушки

при изменении температуры поступающего песка;

- это передаточная функция изменения температуры сушки

при изменении влажности поступающего песка.

3.4.2 Расчет одноконтурной системы регулирования температуры в сушильном барабане

Для нахождения настроек регуляторов воспользуемся методом Циглера-Никольса. Этот метод базируется на критерии Найквиста, из которого можно написать условие нахождения системы на границе устойчивости:

(4),

где - комплексный коэффициент усиления объекта,

- комплексный коэффициент усиления регулятора.

Суть метода заключается в том, что в регуляторе выключают интегральную и дифференциальную составляющие, т.е. С0 = 0 и С2 = 0. Меняя настройку П-регулятора, выводим систему на границу устойчивости, т.е. добиваемся, чтобы в замкнутой системе совершались незатухающие колебания.

Далее находим передаточную функцию объекта регулирования и представляем ее в показательной форме. И для нахождения критической частоты и критической настройки нужно решить систему уравнений:

(5)

где - АЧХ объекта регулирования и регулятора,

- ФЧХ объекта регулирования и регулятора соответственно.

Для П-регулятора передаточная функция будет иметь вид: или в показательной форме , т.е. , а .

Тогда, для П-регулятора, система уравнений (5) примет вид:

(6)

И зная, что (7) и (8), найдем из второго уравнения системы (6) критическую частоту и подставив ее в 1-е уравнение системы найдем критическую настройку .

Мы нашли критическую настройку, при которой одноконтурная система, будет находиться на границе устойчивости, т.е. в ней будут происходить незатухающие колебания. Далее, для определения параметров регуляторов, используются эмпирические формулы. Для ПИ-регулятора оптимальные настройки принимают следующие значения:

(9), (10)

,

Переходный процесс в одноконтурной системе (рис.1) при данных настройках регулятора имеет следующий вид (рис. 2):

Рис.1. Одноконтурная система с ПИ-регулятором при подаче на вход 1(t).

Рис. 2. Переходной процесс в одноконтурной системе при подаче на вход 1(t).

Рис. 3. Переходной процесс в одноконтурной системе при подаче на вход возмущения.

3.4.3 Исследование одноконтурной системы на устойчивость

Для исследования системы на устойчивость воспользуемся критерием Найквиста.

Найдем передаточную функцию разомкнутой системы. Она будет равна произведению передаточных функций регулятора и объекта управления:

(11)

Т.к. в передаточной функции присутствует одно интегрирующее звено, то данная система - астатическая с астатизмом первого порядка . Сделаем замену . Поскольку при , т.е. годограф претерпевает разрыв, поэтому чтобы воспользоваться критерием Найквиста введем вспомогательный годограф, который образует замкнутый контур, т.е. интегрирующее звено заменим апериодическим:

(12)

При годограф будет растягиваться и точка на действительной оси . В результате годографы совпадут за исключением точки . В соответствии с этим сформулируем критерий Найквиста для астатических систем: для определения устойчивости замкнутой системы годограф разомкнутой системы с астатизмом любого порядка добавляют дугой бесконечно большого радиуса до действительной положительной полуоси, а далее применяют первую или вторую формулировку критерия Найквиста, в зависимости от того устойчива или не устойчива разомкнутая система.

Корни характеристического уравнения разомкнутой системы отрицательны, значит разомкнутая система устойчива. Т.е. воспользуемся первой формулировкой критерия Найквиста, которая гласит: если разомкнутая система устойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф разомкнутой системы не обхватывал точку с координатой (-1 ; j0).

Годограф разомкнутой системы (рис.4) не обхватывает точку (-1 ; j0), значит замкнутая система устойчива. Запас устойчивости по амплитуде .

Рис.4. Годограф разомкнутой системы.

3.4.4 Расчет комбинированной АСР

При анализе сушильного барабана песка как объекта управления было выявлено наиболее сильно влияющее на режим его работы внешнее возмущение, которое можно измерить. Это - изменение температуры и влажности песка, поступающего на сушку. В этом случае целесообразно построение комбинированной АСР. Такая система позволяет максимально ослабить влияние контролируемого возмущения на регулируемую величину с помощью компенсатора, оставляя на долю регулятора с обратной связью отработку величины задания не полностью скомпенсированного измеряемого возмущения, а также тех возмущений, действующих на объект, которые измерить не удаётся.

Регулятор температуры будет получать ее текущее значение, учитывать текущее значение возмущения и воздействовать на регулирующий затвор на линии подачи газа с целью изменения его расхода. В качестве закона регулирования выбираем ПИ-закон, обеспечивающий астатическое регулирование достаточно высокого качества. Сигнал с устройства компенсации возмущения будем подавать на вход регулятора.

3.4.4.1 Определение рабочей частоты

Основой расчета комбинированных систем регулирования является принцип инвариантности. Который можно сформулировать следующим образом: отклонение выходной координаты ТОУ y(t) под действием возмущения x(t) должно быть тождественно равны нулю:

(13)

Переходя к изображениям по Лапласу y(р) и x(р) сигналов y(t) и x(t),

условие (13) при y0(t)=0 можно преобразовать к виду:

(14)

Равенство (144.6) используется для вывода передаточной функции компенсатора Rk(p) при заданных характеристиках объекта по каналам возмущения WОВ(p) и регулирования WОУ(p).

Преобразованные структурные схемы комбинированной АСР при подаче компенсирующего воздействия на вход объекта и при подаче компенсирующего воздействия на вход регулятора представляют последовательное соединение разомкнутой системы и замкнутого контура, передаточные функции которых равны:

(4.7) (15)

(16)

Передаточная функция комбинированной АСР:

или

Так как , то условие инвариантности перепишем в виде:

(17)

Комбинированную АСР можно рассматривать, как двухступенчатый фильтр для сигнала возмущения, состоящий из разомкнутой системы и замкнутого контура. Характерной особенностью замкнутой системы регулирования является наличие пика на АЧХ на рабочей частоте , в окрестности которого она обладает наихудшими фильтрующими свойствами. Поэтому условие приближенной инвариантности обеспечивается для частот и .

Передаточная функция замкнутой системы имеет следующий вид:

(18)

Далее подставляя и выделяя мнимую и действительную части находим АЧХ по формуле: (19)

Рис.5. АЧХ замкнутой системы одноконтурной АСР

По АЧХ, изображенной на рис.5 найдем рабочую частоту:

щр = 0,50699792[ рад/мин]; АЗСр) = 3,9275

3.4.4.2 Расчет комбинированной АСР при подаче компенсирующего сигнала на вход регулятора

Рис.6. Структурная схема комбинированной АСР при подаче компенсирующего сигнала на вход регулятора

Рис.7. Преобразованная структурная схема комбинированной АСР при подаче компенсирующего сигнала на вход регулятора

Рассмотрим в качестве возмущения изменение температуры поступающего в барабан песка.

Передаточная функция идеального компенсатора имеет следующий вид:

(20)

Подставив в (20) и выделив мнимую и реальную части построим годограф идеального компенсатора RK(щ), который изображен на рис.8. И найдем:

В качестве реального компенсатора выберем реально-дифференцирующее звено:

(21)

Для нахождения постоянных времени T1 и T2 необходимо подставить в (21), выделить мнимую и реальную части и решить систему уравнений:

(22)

T1=213.40596279 и Т2=34.00496192

Т.о. передаточная функция реального компенсатора будет иметь следующий вид:

(23)

Так как cледовательно годографы идеального и реального компенсаторов совпадают на рабочей и на нулевой частотах (рис.8).

Рис. 8. Годографы идеального и реального компенсаторов.

Рис.9. Переходный процесс комбинированной системы

а) с компенсатором; б) без компенсатора.

Далее рассмотрим в качестве возмущения изменение влажности поступающего в барабан песка.

Передаточная функция идеального компенсатора имеет следующий вид:

(24)

Подставив в (24) и выделив мнимую и реальную части построим годограф идеального компенсатора RK(щ), который изображен на рис. 9. И найдем:

В качестве реального компенсатора выберем комбинацию из апериодического звена первого порядка и реального дифференцирующего звена:

(25)

где k - коэффициент усиления k =15, а для нахождения постоянных времени Т1 и Т2 необходимо подставить в (25) и выделить мнимую и реальную части. Далее необходимо решить систему уравнений:

(26)

T1=11.17498194 и Т2=0.99646235

Т.о. передаточная функция реального компенсатора будет иметь следующий вид:

(27)

Так как cледовательно годографы идеального и реального компенсаторов совпадают на рабочей и на нулевой частотах (рис.10).

Рис.10. Годографы идеального и реального компенсаторов.

Рис.11. Переходный процесс комбинированной системы

а)с компенсатором; б) без компенсатора.

3.4.5 Сравнение качества переходных процессов одноконтурной и комбинированной АСР

На рис.12 приведено сравнение переходных процессов в одноконтурной АСР с ПИ-регулятором (а) и в комбинированной системе регулирования (б).

Из рис.12 видно, что лучший переходной процесс получился при использовании комбинированной АСР. Таким образом, можно сделать вывод о том, что при использовании комбинированной АСР качество регулирования лучше, чем при использовании одноконтурной.

Рис. 12. Сравнение переходных процессов в одноконтурной (а) и комбинированной (б) системах.

3.5 Разработка схемы внешних соединений

Схема внешних соединений показывает связи между всеми элементами управления, контроля и регулирования данной системы автоматизации, находящимися между объектом управления и щитами.

Схема внешних соединений разработана на основе функциональной схемы автоматизации ДП 210200.833.2005 А2, схемы электрической принципиальной ДП 210200.833.2005 Э3.1, ДП 210200.833.2005 Э3.2.

Температура песка в бункере измеряется термоэлектрическим преобразователем ТХК «Метран-252» (поз.3-1). С термопреобразователя сигнал передаётся на щит аппаратной по компенсационному проводу ПТВ 2х2,5 через протяжную коробку ПК-200.

Температура песка в сушильном барабане измеряется термоэлектрическим преобразователем термометром сопротивления ТХК «Метран-252» (поз.1-1). С термопреобразователя сигнал передаётся на щит аппаратной по компенсационному проводу ПТВ 2х2,5 через протяжную коробку ПК-200.

Измерение влажности песка в бункере песка осуществляется измерителем влажности Микрорадар-113К (поз.2-1, 2-2). С него стандартный токовый сигнал 4-20мА передаётся на щит аппаратной по кабелю КУПР 4х0,35 через соединительную коробку КС-16№1.

Измерение содержания кислорода в отходящих из сушильного барабана дымовых газах осуществляется кислородомером ПЭМ-О2 (поз.4-1, 4-2). С него стандартный токовый сигнал 4-20мА передаётся на щит аппаратной по кабелю КУПР 4х0,35 через соединительную коробку КС-16№1.

Измерение расхода воздуха, поступающего в сушильный барабан на горение, осуществляется методом переменного перепада давлений на стандартной диафрагме (поз.6-1). От отборных камер диафрагмы через запорные вентили ВИ-160 импульсы поступают на вентильную головку измерительного преобразователя (поз.6-2). Вентильная головка обеспечивает возможность снятия прибора для поверки, а также проверку на нулевые показания.мембрану измерительного преобразователя разности давлений «Метран-22-ДД» (поз.6-2). Измерительный преобразователь «Метран-22-ДД» обеспечивает преобразование значения перепада давлений на диафрагме в стандартный токовый сигнал 4-20мА, который по кабелю КУПР 4х0,35 передается на щит аппаратной через соединительную коробку КС-16№1. В случае загрязнения системы трубных проводок необходимо провести продувку труб. Для этого предусмотрена дренажная система.

Измерение влажности песка в разгрузочной камере сушильного барабана осуществляется измерителем влажности Микрорадар-113К (поз.7-1, 7-2). С него стандартный токовый сигнал 4-20мА передаётся на щит аппаратной по кабелю КУПР 4х0,35 через соединительную коробку КС-16№1.

Измерение расхода воздуха, поступающего в сушильный барабан на сушку, осуществляется методом переменного перепада давлений на стандартной диафрагме (поз.12-1). От отборных камер диафрагмы через запорные вентили ВИ-160 импульсы поступают на вентильную головку измерительного преобразователя (поз.12-2). Вентильная головка обеспечивает возможность снятия прибора для поверки, а также проверку на нулевые показания.мембрану измерительного преобразователя разности давлений «Метран-22-ДД» (поз.12-2). Измерительный реобразователь «Метран-22-ДД» обеспечивает преобразование значения перепада давлений на диафрагме в стандартный токовый сигнал 4-20мА, который по кабелю КУПР 4х0,35 передается на щит аппаратной через соединительную коробку КС-16№2. В случае загрязнения системы трубных проводок необходимо провести продувку труб. Для этого предусмотрена дренажная система.

Уровень песка в силосе контролируется измерительным преобразователем уровня «SITRANS LR 400» (поз.10-1, 10-2). С преобразователя стандартный токовый сигнал 4-20мА передаётся на щит аппаратной по кабелю КУПР 4х0,35 через соединительную коробку КС-16№2.

Давление дымовых газов на выходе из сушильного барабана контролируется измерительным преобразователем разрежения «Метран-22-ДВ» (поз.11-1). С преобразователя стандартный токовый сигнал 4-20мА передаётся на щит аппаратной по кабелю КУПР 4х0,35 через соединительную коробку КС-16№2. В случае загрязнения системы трубных проводок необходимо провести продувку труб. Для этого предусмотрена дренажная система.

С каждой соединительной коробки КСК-16 на шкаф в аппаратной идёт по одному кабелю КУПР 19х0,35.

Шкаф питается от щита питания через силовой кабель ВВГ 4х4.

Схема внешних соединений приведена в документе ДП 210200.833.2005 С5.

4. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА

4.1 Введение

В настоящее время общей тенденцией в промышленности является повышение внимания к влиянию производственных процессов на окружающую среду, созданию безопасных и комфортных условий труда персонала. Несмотря на то, что на многих стекольных заводах созданы нормальные условия труда путем проведения постоянных организационно-технических и санитарно-гигиенических мероприятий, технология стекольного производства пока еще связана с профессиональными вредностями.

Наиболее тяжелыми цехами с точки зрения профессиональных, вредностей являются составные и машинно-ванные цехи.

В составных цехах при существующей технологии переработки сырьевых материалов и приготовления шихты наибольшим злом является запыленность воздушной среды. Процессы дробления, измельчения, просеивания сырья, приготовление шихты и их транспортировка обычно сопровождаются обильным выделением пыли, оказывающей вредное влияние на обслуживающий персонал.

Действенной мерой борьбы с запыленностью воздушной среды в составных цехах является локализация ее в местах выделения. С этой целью, помимо общей цеховой приточно-вытяжной вентиляции, пылевыделяющее оборудование герметизируют и устраивают над ним местную отсасывающую вентиляцию. Для транспортировки измельченного сырья и шихты применяют пневмотранспорт. Загрязненный воздух перед выбросом в атмосферу очищают от пыли в очистительных устройствах. При работе с ядовитыми веществами обслуживающий персонал с помощью специальных мероприятий защищается от их вредного влияния.

Современное состояние развития вычислительной техники позволяет использовать в системе управления высокопроизводительные и недорогие электронно-вычислительные машины, которые могут осуществлять упреждающее определение аварийных ситуаций. Это резко повышает уровень безопасности производства, уменьшает или полностью устраняет ущерб, наносимый окружающей среде. Учитывая изложенные обстоятельства, оснащение предприятий современными средствами автоматической защиты является задачей первостепенной важности.

Высокая надёжность и безопасность производств достигается правильными проектными решениями, разработанными на основе всестороннего глубокого научного исследования условий безопасного ведения технологического процесса. Все принятые меры по безопасности находят своё отражение в соответствующих разделах проекта.

Благодаря автоматизации многих производственных процессов резко сокращается применение ручного труда, а следовательно, уменьшается число вредных мест обслуживания, облегчается физический труд, предупреждаются общие и профессиональные заболевания, производственные травмы. Все это способствует повышению производительности труда.

4.2 Анализ на соответствие требованиям безопасности и экологичности

4.2.1 Анализ вредных, опасных и аварийных факторов

Производственные процессы в стекольной промышленности, особенно в составных, керамических цехах и газовых станциях, создают вредные условия труда, так называемые профессиональные вредности, которые оказывают неблагоприятное влияние на организм рабочего и могут явиться причиной заболевания.

Для стекольного производства характерна главным образом вторая группа вредностей. К ней относятся вредности, вызываемые неправильной организацией и техническим несовершенством производственных процессов. Причиной возникновения этого вида вредности являются физические, химические и биологические факторы.

Среди множества вредных воздействий на стекольном производстве можно выделить следующие наиболее важные факторы, оказывающие влияние на жизнь и здоровье человека:

1) неблагоприятные метеорологические условия (повышенная

или пониженная температура и влажность воздуха, чрезмерное тепловое излучение, неблагоприятное сочетание температуры, влажности, теплового излучения и движения воздуха);

2) загазованность различными газами (СО, СО2, SO3 и др.), выделяющимися при сушке сырья, газификации топлива, стекловарении, выработке стеклотары;

3) запыленность воздушной среды, возникающая при выработке

и транспортировке шихты к стекловаренным печам;

4) производственные шум и вибрация при работе машин и аппаратов стекольного производства.

В стекольном производстве встречаются также и отдельные вредности первой группы: интенсификация трудового процесса, неудобное положение тела и пр.

Основную массу сырьевых материалов стекольного производства перерабатывают в составных цехах, где готовят шихту для стекловарения. На данном этапе производства наибольшую угрозу для жизни и здоровья человека представляет запыленность помещения, которая приводит не только к ухудшению здоровья человека, но и к снижению ресурса оборудования и, в конечном итоге, к аварии со значительными экономическими потерями.

Помимо запыленности, опасность представляют движущиеся части транспортеров и элеваторов, вращающиеся лопасти вытяжных и дутиевых вентиляторов, заслонки смесителей, открытые люки бункеров. Неосторожность при их обслуживании может привести к тяжёлым увечьям и гибели людей.

Применение механизмов с электроприводом (вентиляторов, смесителей) также является опасным фактором. Воздействие электрического тока с напряжением 380В чрезвычайно опасно для жизни человека.

Процесс сушки песка в сушильном барабане проводится при температуре около 100С. Это приводит к нагреву корпуса барабана. Прикосновение к таким поверхностям может привести к лёгким ожогам.

Кроме того, опасным фактором является наличие требующего обслуживания оборудования на отметках более 20 метров от уровня земли. Неквалифицированная работа на такой высоте может привести к потерям инструментов, деталей, а также падениям и травмам людей.

Необходимо отметить, что составной цех относится к числу наиболее опасных помещений с точки зрения электрической безопасности, т.к. в атмосфере составных цехов находится пыль, разъедающая изоляцию электропроводов. Это, в свою очередь, приводит к возможному вредному и опасному влиянию электрического тока на обслуживающий персонал, короткому замыканию, возгоранию изоляции электропроводок и выходу из строя аппаратуры. Кроме угрозы для здоровья и жизни персонала, порчи приборов и коммуникаций, это приводит к потере управляемости и аварийной остановке технологического оборудования. Поэтому, в целях безопасности электропроводку прокладывают в трубах, чтобы оградить электрические провода от попадания на них разъедающих материалов (соды, сульфата и др.).

Страницы: 1, 2, 3, 4, 5, 6, 7


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.