реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Автоматизация процесса подготовки шихты

· Номинальное время полного хода выходного вала, сек: 63;

· Номинальный полный ход выходного вала, обороты: 0,25;

· Потребляемая мощность, Ватт: не более 260.

Для управления регулирующей заслонкой на линии подачи газа установлен исполнительный механизм МЭО-16/63-0,25-86, на линии подачи воздуха установлен исполнительный механизм МЭО-40/63-0,25-86, на линии подачи сырьевых компонентов-МЭО-250/10-0,63-86.

Для управления потоками жидкости и газа в системах автоматического розжига, а также для регулирования и защиты предназначен электромагнитный клапан ЭМКГ8. В обесточенном состоянии клапан находится в закрытом положении. При подаче напряжения на обмотку электромагнита якорь поднимается вверх, открывая проход газовому потоку. При отключении напряжения пружина и давление газа возвращают якорь в исходное положение, тем самым перекрывая газовый поток.

Технические характеристики:

· Диаметр условного прохода Dу, мм: 3, 6, 10, 15, 20, 25;

· Рабочее давление газа (избыточное): не более 10 МПа;

· Напряжение питания: 12В, 24В, ~220В (50 Гц);

· Время открытия/закрытия: не более 1,0 сек;

· Потребляемая мощность: не более 20Вт;

· Рабочее положение: вертикальное.

Для управления ЭД вентиляторов используются пускатели электромагнитные серии ПМА. Пускатели электромагнитные предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором переменного напряжения 380 В частоты 50 и 60 Гц. Пускатели обеспечивают надёжную работу в продолжительном, прерывисто-продолжительном, кратковременном и повторно-кратковременном режимах.

При наличии трехполюсных тепловых реле пускатели осуществляют защиту управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз.

Технические характеристики

· Номинальный ток: 10 А;

· Номинальное напряжение катушек управления: 24 В;

· Механическая износостойкость: 3106 циклов включений/отключений;

· Температура окружающей среды: -40 - +45 С;

· Относительная влажность до 80% при температуре 25оС;

· Окружающая среда невзрывоопасная

· Удары в нерабочем состоянии: одиночные - с ускорением до 10 g длительностью 2 20 мс, многократные - с ускорением до 7 g

· длительностью 2 20 мс;

· Рабочее положение в пространстве - крепление на вертикальной

· плоскости выводами вниз.

· Масса: не более 8 кг

Для управления электрическими исполнительными механизмами с однофазным конденсаторным электродвигателем используется пускатель бесконтактный реверсивный ПБР-2М. Пускатель предназначен для бесконтактного управления электрическим исполнительным механизмом с однофазным конденсаторным электродвигателем.

Пускатель состоит из платы, кожуха и передней панели. На передней панели расположены две клеммные колодки для подключения пускателя к внешним цепям, а также винт заземления. Клеммные колодки закрываются крышками. На плате устанавливаются элементы схемы пускателя. Плата вставляется в кожух и закрепляется двумя винтами.

Пускатель рассчитан на установку на вертикальной или горизонтальной плоскости. Положение в пространстве - любое. Крепление пускателя осуществляется двумя болтами, которые установлены на задней стенке кожуха. Технические данные:

· Параметры питания: однофазная сеть переменного тока 220 В, частотой 50 Гц;

· Виды входных сигналов: включение 24 В; отключение 0-2 В;

· Входное сопротивление пускателя: не менее 750 Ом;

· Максимальный коммутируемый ток: 4 А;

· Быстродействие: не более 25 мс;

· Мощность: 7 Вт;

· Норма средней наработке на отказ 200000 ч.

· Условия эксплуатации:

- Температура, оС: от 5 до 50;

- Относительная влажность, %: от 30 до 80;

- Вибрация: частота, Гц: до 25, амплитуда, мм: до 400.

Ключ управления используется типа ПГ2-20-3П20НТ.

Ключ имеет следующие характеристики:

· Количество положений - 3;

· Количество направлений - 20;

· Максимальный ток через замкнутые контакты - 5 А;

· Пробивное напряжение разомкнутых контактов - не менее 1000 В;

· Габаритные размеры 50х50х200 мм;

· Прибор предназначен для монтажа в условиях закрытых помещений.

Кнопочный пост управления применяется типа ПКЕ 612-2УХЛ3.

Кнопочный пост имеет следующие характеристики:

· Количество кнопок - 2;

· Максимальный коммутируемый ток - 2 А;

· Габаритные размеры 100х50х45 мм;

· Прибор предназначен для монтажа в условиях закрытых помещений.

Автоматические выключатели для силовых цепей выбираем типа А 3710 Б. Автоматические выключатели (автоматы) предназначены для защиты электрических сетей и установок от аварийных режимов работы.

Автомат имеет следующие характеристики:

· Номинальный ток: 160 - 630 А;

· Напряжение 440, 660 В;

· Число полюсов 2,3;

· Возможность использования как теплового, так и электромагнитного расцепителя;

· Предельный ток отключения:

- постоянный ток: 110 В;

- переменный ток: 40 - 60 В;

· Габаритные размеры: 225х500х190.

Автоматические выключатели для цепей управления выбираем типа ВА 83-29-1400063М. Автомат имеет следующие характеристики:

· Номинальный ток: 0,3-63 А;

· Однополюсный;

· Электромагнитные и тепловые расцепители;

· Габаритные размеры: 155х60х65 мм;

· Прибор предназначен для монтажа в условиях закрытых помещений.

Согласно выбранному списку приборов составлена заказная спецификация на приборы и средства автоматизации.

Заказная спецификация приведена в документе ДП 210200.833.2005 ПЗ.

3.3 Разработка принципиальной электрической схемы

На основании функциональной схемы автоматизации с учётом выбранных приборов и средств автоматизации разработана принципиальная электрическая схема регулирования, управления и блокировки.

Рассмотрим работу схемы автоматического регулирования.

Для регулирования температуры сушки песка в сушильном барабане используется комбинированная система автоматического регулирования, которая работает следующим образом.

Термоэлектрический преобразователь температуры BК1 измеряет температуру дымовых газов на выходе из сушильного барабана и преобразует ее в пропорциональное значение термоЭДС. Сигнал с контактов 1 и 2 преобразователя поступает по соединительной линии на контакты 13 и 14 модуля ввода сигналов термопар A1.1 цифрового программируемого контроллера. Сигнал текущего значения температуры дымовых газов поступает на вход регулятора температуры, реализованного программным путем в контроллере.

В этот регулятор также поступает сигнал с компенсатора возмущения, реализованного в контроллере программным путем. Как указано выше, в качестве возмущения выступает изменение температуры и влажности песка, поступающего на сушку.

Температура песка измеряется термоэлектрическим преобразователем температуры ВК2 и преобразуется им в пропорциональное значение термоЭДС. Сигнал с контактов 1 и 2 преобразователя поступает по соединительной линии на контакты 15 и 16 модуля ввода сигналов с термопар A1.1 цифрового программируемого контроллера.

Влажность песка измеряется преобразователем влажности В1N и преобразуется им в унифицированный токовый сигнал 4-20 мА. Сигнал с контактов 1 и 2 блока зажимов преобразователя поступает по соединительной линии на контакты 13 и 14 модуля аналогового ввода A1.2.1 цифрового программируемого контроллера. Питание к измерительному преобразователю влажности подается на контакты 7 и 8 блока зажимов от сети переменного тока 220 В, 50 Гц.

Вырабатываемый регулятором температуры сигнал управления через контакты 13, 14 и 15 модуля импульсного вывода A1.3.1 цифрового программируемого контроллера поступает на контакты 1, 2 и 3 магнитного пускателя КМ1 и далее на контакты 1, 2 и 3 электрического исполнительного механизма М1.

Для регулирования влажности высушиваемого песка на выходе из сушильного барабана используем одноконтурную систему регулирования, которая работает следующим образом. Влажность песка измеряется преобразователем влажности В2N и преобразуется им в унифицированный токовый сигнал 4-20 мА. Сигнал с контактов 1 и 2 блока зажимов преобразователя поступает по соединительной линии на контакты 15 и 16 модуля аналогового ввода A1.2.1 цифрового программируемого контроллера, в котором программно реализован регулятор влажности. Питание к измерительному преобразователю влажности подается на контакты 7 и 8 блока зажимов от сети переменного тока 220 В, 50 Гц.

Вырабатываемый регулятором влажности сигнал управления через контакты 13, 14 и 15 модуля импульсного вывода A1.3.2 программируемого контроллера поступает на контакты 1, 2 и 3 магнитного пускателя КМ3 и далее на контакты 1, 2 и 3 электрического исполнительного механизма М3.

Для поддержания необходимого разряжения в сушильном барабане песка используем комбинированную систему регулирования, компенсирующую изменение расхода воздуха, поступающего на сушку. Регулирующее воздействие - изменение количества отводимых дымовых газов. Данная система регулирования реализована следующим образом.

Преобразователь давления ВР1 измеряет разрежение в сушильном барабане и преобразует его в стандартный электрический сигнал постоянного тока. Сигнал с контактов 1 и 2 преобразователя поступает по соединительной линии на контакты 11 и 12 блока питания G3. Питание преобразователя осуществляется по этой же линии. Для включения такого режима контакты 4 и 5 преобразователя BP1 замкнуты перемычкой. Питание блока питания G3 поступает на контакты 1 и 2. Стандартный токовый сигнал в диапазоне 4-20 мА снимается с контактов 3 и 4 блока питания и поступает на контакты 19 и 20 модуля аналогового ввода А1.2.2 многоканального цифрового измерительного преобразователя-контроллера. Сигнал текущего значения давления поступает на вход регулятора давления, реализованного программным путём в преобразователе-контроллере.

В этот регулятор также поступает сигнал с компенсатора возмущения, реализованного в контроллере программным путем. Как указано выше, в качестве возмущения выступает изменение расхода воздуха, поступающего на сушку

Информация о расходе воздуха, поступающего в сушильный барабан, поступает с контактов 1 и 2 измерительного преобразователя перепада давления B7N на контакты 15 и 16 блока питания G2. Питание преобразователя осуществляется по этой же линии. Для включения такого режима контакты 4 и 5 преобразователя B7N замкнуты перемычкой. Питание блока питания G2 поступает на контакты 1 и 2. Стандартный токовый сигнал в диапазоне 4-20 мА снимается с контактов 7 и 8 блока питания и поступает на контакты 17 и 18 модуля аналогового ввода А1.2.2 многоканального цифрового измерительного преобразователя-контроллера. В преобразователе-контроллере программным путём реализован блок извлечения квадратного корня, который служит для линеаризации статической характеристики измерительного преобразователя перепада давления B7N.

Вырабатываемый регулятором давления сигнал управления через контакты 15, 16 и 17 модуля импульсного вывода A1.3.2 программируемого контроллера поступает на контакты 1, 2 и 3 магнитного пускателя КМ4 и далее на контакты 1, 2 и 3 электрического исполнительного механизма М4.

Для регулирования концентрации отходящих дымовых газов на выходе из сушильного барабана используем каскадную систему регулирования. Корректирующим (внешним) регулятором является регулятор концентрации отходящих дымовых газов, а стабилизирующим (внутренним) - регулятор соотношения “воздух/топливный газ”. В качестве регулирующего воздействия выбираем изменение расхода воздуха, поступающего на горение в сушильный барабан.

Информация о расходе газа, поступающего в сушильный барабан поступает с контактов 1 и 2 измерительного преобразователя перепада давления B5N на контакты 11 и 12 питания G2. Питание преобразователя осуществляется по этой же линии. Для включения такого режима контакты 4 и 5 преобразователя B5N замкнуты перемычкой. Питание блока питания G2 поступает на контакты 1 и 2. Стандартный токовый сигнал в диапазоне 4-20 мА снимается с контактов 3 и 4 блока питания и поступает на контакты 13 и 14 модуля аналогового ввода А1.2.2 многоканального цифрового измерительного преобразователя-контроллера. В преобразователе-контроллере программным путём реализован блок извлечения квадратного корня, который служит для линеаризации статической характеристики измерительного преобразователя перепада давления B5N.

Информация о расходе воздуха, поступающего в сушильный барабан, поступает с контактов 1 и 2 измерительного преобразователя перепада давления B6N на контакты 13 и 14 блока питания G2. Питание преобразователя осуществляется по этой же линии. Для включения такого режима контакты 4 и 5 преобразователя B6N замкнуты перемычкой. Питание блока питания G2 поступает на контакты 1 и 2. Стандартный токовый сигнал в диапазоне 4-20 мА снимается с контактов 5 и 6 блока питания и поступает на контакты 15 и 16 модуля аналогового ввода А1.2.2 многоканального цифрового измерительного преобразователя-контроллера. В преобразователе-контроллере программным путём реализован блок извлечения квадратного корня, который служит для линеаризации статической характеристики измерительного преобразователя перепада давления B6N.

Анализатор B3N измеряет концентрацию О2 в отходящих дымовых газах на выходе из сушильного барабана и преобразует его в унифицированный электрический сигнал постоянного тока в диапазоне 4-20 мА. Питание анализатора осуществляется через контакты 7 и 8 блока зажимов от сети переменного тока 220 В, 50 Гц. Сигнал с контактов 1 и 2 блока зажимов анализатора поступает по соединительной линии на контакты 17 и 18 модуля аналогового ввода A1.2.1 цифрового программируемого контроллера. Величина концентрации поступает в регулятор, реализованный в контроллере программным путем. Сюда же поступает сигнал с блоков корнеизвлечения.

Вырабатываемое регулятором концентрации воздействие через контакты 16, 17 и 18 модуля импульсного вывода A1.3.1 программируемого контроллера поступает на контакты 1, 2 и 3 магнитного пускателя КМ2 и далее на контакты 1, 2 и 3 электрического исполнительного механизма М2.

Для поддержания уровня песка в силосе на нужном значении используется одноконтурная система автоматического регулирования уровня, которая работает следующим образом. Измерительный преобразователь уровня B4N измеряет уровень в силосе и преобразует его в стандартный электрический сигнал постоянного тока, пропорциональный уровню песка. Сигнал с контактов 1 и 2 преобразователя поступает по соединительной линии на контакты 19 и 20 модуля аналогового ввода контроллера А1.2.1. Питание преобразователя осуществляется через контакты 4 и 5 блока зажимов от сети переменного тока 220 В, 50 Гц. Сигнал текущего значения уровня поступает на вход регулятора уровня, реализованного программным путём в преобразователе-контроллере. Вырабатываемое регулятором воздействие через контакты 18, 19, 20 модуля импульсного вывода А1.3.2 преобразователя-контроллера поступает на магнитный пускатель КМ5 и далее на контакты 1,2 и 3 исполнительного механизма.

Рассмотрим работу схемы автоматической блокировки.

Модуль дискетного ввода А1.4.2, питается от блока питания G1, который преобразует напряжение питающей сети 220В в стабилизированное напряжение 5 В. На модуль А1.4.2 поступают сигналы датчиков реле давления. Питание реле давления Р1.1, Р1.2, Р2.1, Р2.2, Р3.1, Р3.2 осуществляется от блока питания G5 через клеммы 1, 2. Сигнал о достижении давлением газа в трубопроводе минимального значения по соединительной линии с контакта Р1.1 двухпредельного реле давления поступает на модуль дискретного ввода А1.4.2 через клеммы 13, 14. При достижении давлением газа в трубопроводе максимального значения дискретный сигнал с рконтакта реле Р1.2 поступает на модуль ввода А1.4.2 на клеммы 13, 15.

Сигнал о достижении давлением воздуха, подаваемого на горение, предельного значения (максимального - через контакт реле Р2.1, минимального - через контакт реле Р2.2) поступает на модуль дискретного ввода А1.4.2 через клеммы 13, 16 и 13, 17 соответственно.

Сигнал о достижении давлением воздуха, подаваемого на сушку, предельного значения (максимального - через контакт реле Р3.1, минимального - через контакт реле Р3.2) поступает на модуль дискретного ввода А1.4.2 через клеммы 13, 18 и 13, 19 соответственно.

Сигнал о достижении давлением воздуха, подаваемого на горение, предельного значения (максимального - через контакт реле Р4.1, минимального - через контакт реле Р4.2) поступает на модуль дискретного ввода А1.4.2 через клеммы 13, 20 и 13, 21 соответственно.

Также на клеммы 13 и 14 модуля дискретного ввода А1.4.1 поступает релейный сигнал с клемм 9 и 10 датчика аварийного снижения скорости транспорте, питающегося напряжением 220 В, 50Гц; на клеммы 15 и 16 - сигнал с 9 и 10 клеммы датчика аврийного снижения скорости элеватора, питающегося напряжением 220 В, 50 Гц; на клеммы 17 и 18 модуля - сигнал с 1 и 2 клеммы измерительного преобразователя уровня, питающегося напряжением 220 В, 50 Гц; на клеммы 19 и 20 модуля - сигнал с клемм 1 и 2 датчика наличия пламени, питающегося напряжением 220 В, 50 Гц.

Модуль дискетного вывода А1.3.3, питается блоком питания G1, который преобразует напряжение питающей сети 220В в стабилизированное напряжение 5 В.

С модуля гальванически связанного дискретного вывода А1.3.3 через клеммы 13, 14, 15 дискретный сигнал поступает на клеммы 2, 3, 4 бесконтактного пускателя КМ6, питание которого осуществляется через клеммы 11, 12 напряжением 220 В, 50 Гц. С клемм 8, 9, 10 пускателя сигнал поступает на клеммы 1, 2, 3 исполнительного механизма М6, управляющего заслонкой бункера песка.

С модуля гальванически связанного дискретного вывода А1.3.3 через клеммы 16, 17, 18 дискретный сигнал поступает на клеммы 2, 3, 4 бесконтактного пускателя КМ7, питание которого осуществляется через клеммы 11, 12 напряжением 220 В, 50 Гц. С клемм 8, 9, 10 пускателя сигнал поступает на клеммы 1, 2, 3 исполнительного механизма М7, управляющего заслонкой силоса песка.

С модуля дискретного вывода А1.3.3 дискретный сигнал через клеммы 22, 23 подается на промежуточное реле напряжение KV1. В ручном режиме реле напряжения питается от блока питания G5 через клеммы 7и 8. При подаче напряжения на реле KV1, замыкаются его контакты KV1.1 и KV1.2 при этом срабатывает электромагнитный клапан YA1, управляющий отсекателем на линии подачи газа.

Для управления электродвигателями вентиляторов используются магнитные пускатели.

В схеме управления электродвигателями и электромагнитными клапанами используется ключ управления SA1 для выбора режима работы: ручного или автоматического. Если переключатель находится в положении 1 (ручное управление) пуск и остановка двигателя осуществляется с помощью кнопочного поста управления SB1. Пост управления имеет две кнопки SB1.1 - «Стоп» и SB1.2 - «Пуск». В ручном режиме пускатель КМ8 питается от блока питания G4 через клеммы 7 и 8. При нажатии на кнопку SB1.2 подается питание на магнитный пускатель КМ8, который, срабатывая, замыкает свой контакт КМ8.1. Таким образом, цепь пускателя остаётся замкнутой при отпускании кнопки SB1.2. Одновременно замыкаются и остальные контакты пускателя (КМ8.2, КМ8.3, КМ8.4) подавая трехфазное напряжение на двигатель М8. При нажатии на кнопку SB1.1 происходит разрыв цепи пускателя КМ8, размыкание контактов КМ8.1, КМ8.2, КМ8.3 и КМ8.4. Происходит остановка двигателя. Так как контакт КМ8.1 разомкнут, при отпускании кнопки SB1.1 питание на пускатель КМ8 не подается.

Управление электродвигателем М8 в автоматическом режиме осуществляется с помощью многоканального цифрового измерительного преобразователя-контроллера через модуль дискретного вывода А1.3.3, при этом переключатель режимов SA1 находится в положении 2 (автоматическое управление).

Подача общего питания к электродвигателям вентиляторов, транспортеров, сушильного барабана, шнековых и вибропитателей от сети трехфазного переменного тока 380В 50Гц через общий автоматический выключатель QF1.

При возникновении коротких замыканий автоматический выключатель QF1 отсоединяет электродвигатели от сети. От перегрузок каждый электродвигатель защищён с помощью тепловых реле F1-F6. При перегрузках контакты реле F1.1 - F6.1 размыкают цепь магнитных пускателей КМ1-КМ6.

Питание многоканального цифрового измерительного преобразователя-контроллера А1 осуществляется от сети переменного тока 220В 50 Гц через блок питания G1. Напряжение переменного тока 220В 50 Гц через автоматический выключатель SF1 подается на контакты 1 и 2 блока питания, с контактов 7 и 8 снимается пониженное напряжение постоянного тока 5В, которое подается на контакты 1 и 2 модулей ввода-вывода многоканального цифрового измерительного преобразователя-контроллера.

Принципиальная электрическая схема и спецификация использованных приборов и технических средств автоматизации приведены в документе ДП 210200.833.2005 Э3.1 и ДП 210200.833.2005 Э3.2.

3.4 Расчет АСР

Удовлетворительное качество регулирования в простейшей одноконтурной системе с использованием стандартных законов регулирования можно обеспечить лишь при благоприятных динамических характеристиках объекта. Однако большинству промышленных объектов свойственны значительное чистое запаздывание и большие постоянные времени. В таких случаях даже при оптимальных настройках регуляторов одноконтурные АСР характеризуются большими динамическими ошибками, низкой частотой регулирования и длительными переходными процессами. Для повышения качества регулирования необходим переход от одноконтурных АСР к более сложным системам, использующим дополнительные (корректирующие) импульсы по возмущениям пли вспомогательным выходным координатам. Такие системы кроме обычного стандартного регулятора содержат вспомогательные регулирующие устройства -- динамические компенсаторы или дополнительные регуляторы.

При условии, если имеется возможность автоматического измерения наиболее «сильного» возмущающего воздействия на ТОУ, то применяется комбинированная АСР, в которой действие контролируемого возмущения компенсируется специальным устройством с помощью регулятора, находящегося в контуре обратной связи. Таким образом регулирующее воздействие формируется на основании двух принципов регулирования: по отклонению регулируемой переменной от заданного значения и по возмущению. Компенсация возмущения осуществляется путем введения дополнительного управляющего воздействия либо на вход канала регулирования, либо непосредственно на вход регулятора.

3.4.1 Нахождение динамических характеристик объекта

Динамические характеристики объекта найдем методом Наслена, используя данные найденные по переходным характеристикам реального объекта:

а) При изменении положения регулирующего органа на 10%:

· значение координаты времени Т = 30 [c];

· значение транспортного запаздывания = 1 [c];

· количество точек ординаты d = 16;

Страницы: 1, 2, 3, 4, 5, 6, 7


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.