реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Основные представления о специальной и общей теории относительности

При ? = V/c > 0 релятивистский закон сложения скоростей (13) с

точностью до линейных по ? членов переходит в формулу преобразования

скоростей в классической механике:

|v = v' + V.|

| |

| |

Из (13) следует, что скорость частицы меньшая скорости света в

вакууме (v' < c) в одной системе отсчета, останется меньше скорости света в

вакууме (v < c) в любой другой системе отсчета, движущейся по отношению к

первой с досветовой скоростью V < c. Если же [pic]' = (c,0,0), то [pic]=

(c,0,0): скорость света одна и та же во всех системах отсчета.

Более общее преобразование скорости можно получить из формулы (14),

если в ней перейти к дифференциалам координат и времени и использовать, что

vx = dx/dt, vy = dy/dt, vz = dz/dt и аналогичные выражения для

vx', vy', vz'. После преобразования получившегося соотношения, получим

|vx' = |

|vx + V |

|[pic] |

|1 - V vx/c2 |

|, vy' = |

|vy |

| |

|________ |

|?1 - V2/c2 |

| |

| |

| |

|[pic] |

|1 - V vx/c2 |

|, vz' = |

|vz |

| |

|________ |

|?1 - V2/c2 |

| |

| |

| |

|[pic] |

|1 - V vx/c2 |

|. |

| |

2.5 Собственное время, события и мировые линии частиц

В качестве часов наблюдатели в системах S, S' могут использовать

любой периодический процесс, например, излучение атомов или молекул на

определенных фиксированных частотах. Время, отсчитываемое по часам,

движущимся вмемте с данным объектом, называется собственным временем этого

объекта. Для измерения длин можно взять некоторый эталон - линейку.

Собственной длиной линейки называется ее длина l0 в той системе, в которой

она покоится. Величина l0 равна модулю разности координат концов линейки в

один и тот же момент времени.

Совокупность декартовых координат [pic]= (x,y,z) и момента времени t

в некоторой инерциальной системе отсчета определяют событие. Событием

является, например, нахождение точечной частицы в момент времени t в точке

пространства, указанной вектором [pic].

Множество всех событий образуют "четырехмерный Мир Минковского".

Отдельные точки в четырехмерном пространстве указывают координаты и время

некоторого "события". Последовательность кинематических состояний любого

тела (его координаты в разные моменты времени) изображается мировой линией

(Рис. 7).

[pic]

Рис. 7

Если частицы движутся только вдоль оси 0x, то наглядно представить

"Мир Минковского" можно с помощью плоскости координат (с t, x). Время

удобно умножить на скорость света, чтобы обе координаты имели одинаковую

размерность. Это можно сделать, поскольку скорость света - универсальная

мировая константа.

[pic]

Рис. 8

Мировыми линиями (в отличие от траекторий классической механики)

обладают не только движущиеся, но и покоящиеся в данной инерциальной

системе отсчета тела. Так, мировая линия тела, покоящегося в начале

координат, будет совпадать с временной осью 0 ct, а тела, покоящегося в

пространственной точке xa - является прямой AB, параллельной оси времени.

Мировая линия тела, движущегося с постоянной скоростью V - (и при t = 0,

находящегося в точке x(0) = 0) - прямая CD; мировая линия светового луча,

испущенного из начала координат в напралении оси x - биссектриса

координатного угла OF; мировая линия тела, движущегося с переменной

скоростью v(t) - кривая MN (cм. Рис. 8а))

2.6 Геометрический смысл преобразований Лоренца

Выясним теперь геометрический смысл преобразований Лоренца. Еще раз

запишем его только для x и t в виде

|x' = ? (x - ? ct), ct' = ? (ct -|

|? x). |

| |

Это линейное однородное преобразование, очень похожее на

преобразование поворота на угол ? в плоскости XY:

|x' = x cos?+ y sin?, y' = - |

|x sin?+y cos?. |

| |

Новые оси x', y', получающиеся в результате поворота изображены на

Рис. 8 б).

Важнейшим свойством преобразования поворота является сохранение

расстояния между любыми двумя точками: r12 = r'12.

Здесь:

[pic]

Введем величину, зависящую от параметров двух событий { [(r1)\vec],t1

} и { [(r2)\vec],t2 } и определенную равенством

|s12 = [ c2 (t2 - t1)2 - (x2 - x1)2 - (y2 - |(15) |

|y1)2- (z2 - z1)2 ]1/2. | |

| | |

Она называется пространственно - временным интервалом.

Прямой подстановкой формул (12) можно проверить, что величина

пространственно - временного интервала между двумя событиями является

инвариантом преобразований Лоренца:

|s12' = s12. |(16) |

| | |

В двумерном случае [pic]можно рассматривать как "расстояние" между

точками плоскости ct, x. Но квадрат разности координат входит в s12 со

знаком "минус". Пространство, в котором расстояние между точками определено

формулой (15) называется псевдоевклидовым. Наряду с отмеченным сходством,

между евклидовым и псевдоевклидовым пространствами имеются принципиальные

различия. В евклидовом пространстве расстояние между любыми точками r212 ?

0, равенство нулю означает, что точки совпадают. В псевдоевклидовом

пространстве s212 может иметь любой знак, а его обращение в нуль возможно

для двух совершенно различных точек пространства - времени.

Найдем положение новых осей (x', ct') на псевдоевклидовой плоскости.

Отложим координата x, ct на прямоугольных осях. (Рис. 9). Точка x' = 0,

сопадающая с началом координат системы S', движется в системе S со

скоростью V. Ее мировая линия будет представлять собой ось времени ct'

системы S'. Эта ось будет наклонена к оси ct на угол ? = arctg (V/c). Ось

x' новой системы можно определить условием ct' = 0. Но тогда в старой

системе координат это будет прямая ct = ?x, проходящая через начало

координат и составляющая с осью x тот же угол ? = arctg (V/c).

Приходим к выводу, что новая система координат косоугольна! Если

попытаться найти связь между отрезками x', ct' и x, ct, посто проектируя

отрезки (так как это делается в эвклидовом случае), то получится

неправильный результат. Преобразования Лоренца не только поворачивают оси,

но и искажают масштабы координат по осям!

Итак, основной результат состоит в том, что преобразования Лоренца

можно интерпретировать, как псевдоевклидово вращение системы координат в

пространстве Минковского.

[pic]

Рис. 9

С помощью Рис. 9 можно дать геометрическую интерпретацию различным

следствиям из преобразований Лоренца. Вспомним, например, относительность

одновременности. В системе S линии равного времени - прямые параллельные

оси 0x. В системе S' - это прямые, параллельные 0x', не совпадающие с

линиями равного времени в системе S. Поэтому события, одновременные в S, не

будут в общем случае одновременными в S. Например, между одновременными в

системе S событиями A и B в системе S' пройдет промежуток времени ? t' =

|A'B'|/c, причем событие B произойдет раньше.

Как ясно из вышеизложенного, на псевдоевклидовой плоскости квадрат

интервала s212 может быть как положительным, так и равным нулю и

отрицательным.

Если s212 > 0, его называют времениподобным, при s212 < 0 -

пространственноподобным, при s212 = 0 - светоподобным или нулевым.

Характер интервала тесно связан c причинностью - он определяет

возможность причинной связи событий, происходящих в пространственно -

временных точках 1 и 2. Если s212 > 0, то из точки 1 можно послать сигнал

со скоростью [pic], который вызовет событие 2. В случае s212 = 0 это также

возможно, но сигнал должен посылаться с предельной скоростью c. События,

разделенные пространственноподобным интервалом, не могут быть причинно

обусловлены, т.к. сигналы не могут распространяться со скоростью [pic].

2.7 Замедление времени

Рассмотрим часы, покоящиеся в начале координат движущейся системы (x'

= 0), которые перемещаются относительно лабораторной системы координат со

скоростью V, так что их координата x = V t пропорциональна времени,

определяемому неподвижными часами. Инвариантность интервала позволяет,

тогда, определить показания движущихся часов:

|t' = t |(17) |

| | |

|________ | |

|?1 - V2/c2 | |

| | |

|. | |

| | |

Время, измеряемое часами, движущимися относительно лабораторной

системы отсчета, замедляется.

Как ни покажется странным, но тот же вывод справедлив относительно

замедления темпа хода часов в лабораторной системе координат с точки зрения

наблюдателя из движущейся системы отсчета, т.е. "движущиеся" и "покоящиеся"

часы взаимно отстают друг от друга.

С последним замечанием тесно связан широко известный парадокс

близнецов (см. ниже раздел "Задачи").

Замедление хода времени в движущейся системе отсчета было

экспериментально подтверждено американскими физиками Б. Росси и Д.Х. Холлом

в 1941 году. Они наблюдали увеличение среднего времени жизни мюонов,

двигавшихся со скоростью v ? c, в 6 ч8 раз по сравнению с временем жизни

неподвижных мюонов.

Особая ценность этого эксперимента состоит в том, что процесс распада

мюонов определяется слабым взаимодействием, в то время как СТО была

построена для описания систем с электромагнитным взаимодействием.

2.8 Лоренцево сокращение длины

Стержень, расположенный вдоль оси 0'X' движущейся системы отсчета и

покоящийся в ней, имеет длину l0. Если один из концов стержня (для

простоты) сосвпадает с началом координат этой системы, то в момент t = 0 по

часам лабораторной системы отсчета координаты концов стержня определяются

преобразованием Лоренца:

|x1 = 0, x2 = l = l0 |(18) |

| | |

| ________ | |

|?1 - V2/c2 | |

| | |

|. | |

| | |

Длина движущегося стержня в лабораторной системе отсчета уменьшается

в направлении движения. Это изменение длины называется сокращением Лоренца

- Фитцджеральда.

Поскольку поперечные размеры тела не изменяются, то легко видеть, что

объем тела также уменьшается:

|V = V0 |(19) |

| | |

| ________ | |

|?1 - V2/c2 | |

| | |

|. | |

| | |

3 Динамика специальной теории относительности

3.1 Энергия и импульс частицы

Под массой частицы m будем понимать ее массу, измеряемую в системе

покоя частицы - массу покоя.

Релятивистским импульсом частицы массы m, движущейся в выбранной

инерциальной системе отсчета со скоростью [pic], называется векторная

величина [pic], определяемая формулой

| |(20) |

|> | |

|p | |

| | |

|= | |

|m | |

|> | |

|v | |

| | |

| | |

| | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - (v/c)2 | |

| | |

| | |

| | |

| | |

|. | |

| | |

Релятивистский импульс имеет ту же размерность, что и импульс в

классической механике. При v/c > 0, [pic]> m [pic] (с точностью до

линейных по v/c слагаемых).

Энергией частицы в релятивистской физике называется величина E,

определяемая выражением

|E = |(21) |

|m c2 | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - (v/c)2 | |

| | |

| | |

| | |

| | |

|. | |

| | |

Энергия имеет ту же размерность и измеряется в тех же единицах, что и

энергия в ньютоновской механике.

Энергия частицы в той системе отсчета, в которой она покоится,

называется ее энергией покоя E0:

|E0 = |

|mc2. |

| |

При ? = v/c > 0 релятивистское выражение для энергии частицы может быть

записано в виде

|E = mc2 + |

|m v2 |

|[pic] |

|2 |

|= E0 + |

|m v2 |

|[pic] |

|2 |

|. |

| |

Второе слагаемое совпадает с кинетической энергией частицы в

классической теории. Разность E - mc2 = T называют кинетической энергией

релятивистской частицы.

Из формул (20) и (21) находим полезную формулу для скорости частицы:

| |(22) |

|> | |

|v | |

| | |

|= c2 | |

| | |

|> | |

|p | |

| | |

| | |

| | |

|[pic] | |

|E | |

|. | |

| | |

3.2 Релятивистские преобразования энергии и импульса

Рассмотрим вновь две инерциальные системы отсчета, движущиеся друг

относительно друга со скоростью V в направлении оси x.

Закон преобразования для величин (E, [pic]) и (E', [pic]'),

измеряемых в системах S и S', имеет форму преобразования (23):

|E' = |(23) |

|E - V px | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - (V/c)2 | |

| | |

| | |

| | |

| | |

|, px' = | |

|px - E V/c2 | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - (V/c)2 | |

| | |

| | |

| | |

| | |

|, py' = py, pz' = pz. | |

| | |

Таким образом,энергия и импульс частицы зависят от выбора системы

отсчета, однако существует величина, которая имеет абсолютный смысл. Из

формул (23) следует, что

| |

|? |

|? |

|? |

| |

|E' |

|[pic] |

|c |

| |

|? |

|? |

|? |

|2 |

| |

| |

|- |

|> |

|p |

| |

| '2 = |

|? |

|? |

|? |

| |

|E |

|[pic] |

|c |

| |

|? |

|? |

|? |

|2 |

| |

| |

|- |

|> |

|p |

| |

| 2 = m2 c2, |

| |

из которого следует, что масса частицы одинакова во всех системах отсчета

и, следовательно, является релятивистским инвариантом.

[pic]

Рис. 10

Используя последнее выражение можно легко получить соотношение, связывающее

энергию и импульс в релятивистской физике:

[pic]

.

Эта зависимость энергии от импульса изображена на Рис. 10. При малых

значениях импульса E = m c2 + p2/2 m, а при достаточно больших импульсах

E = p c.

Иногда формулу (21), записывают в виде E = m(v) c2, вводя "релятивистскую

массу" частицы, зависящую от скорости:

|m(v) = |

|m |

|[pic] |

| |

| |

| ________ |

|?1 - (v/c)2 |

| |

| |

| |

| |

|. |

| |

Саму же формулу (21) истолковывают, как "эквивалентность" энергии и

массы в релятивистской физике. Однако такое утверждение приводит лишь к

путанице (а в преждние времена вело даже к ожесточенным идеологическим

спорам). Масса и энергия совершенно разные характеристики частицы. Масса -

инвариант, а энергия - динамическая характеристика, зависящая от выбора

системы отсчета. Взаимосвязь энергии и массы частицы имеет место только в

системе покоя частицы.

Поэтому понятие "массы, зависящей от скорости" [(m)/([?(1 -

(v/c)2)])] лишено физического смысла!

3.3 Частицы с нулевой массой покоя

Если в формулах (20,21) формально положить скорость частицы v = c, то

энергия и импульс частицы обращаются в бесконечность. Это значит, что

частица с отличной от нуля массой покоя не может двигаться со скоростью

света. В релятивистской механике однако предполагается, что существовуют

частицы с массой покоя равной нулю, всегда движущиеся со скоростью света.

Из (22) видно, что для таких частиц модуль импульса и энергия связаны

соотношением:

|| |

|> |

|p |

| |

|| = |

|E |

|[pic] |

|c |

|, |

| |

откуда следует, что здесь

|(E/c)2 - |

|> |

|p |

| |

| 2 |

| |

|= 0 |

| |

в соответствии с тем, что m = 0.

К частицам с нулевой массой покоя относятся, например, фотоны - кванты

электромагнитного поля. В больших деталях их свойства будут обсуждены в

разделе "Квантовая теория" - задание N 5.

3.3 Релятивистский эффект Доплера

Рассмотрим плоскую монохроматическую волну

|E( |(23) |

|> | |

|r | |

| | |

| ,t) = E0 cos | |

|? | |

|? | |

| | |

|> | |

|k | |

| | |

|· | |

|> | |

|r | |

| | |

|- ? t | |

|? | |

|? | |

|. | |

| | |

Здесь ?- частота волны, а [pic]= k [pic] - волновой вектор (k =

[(?)/( c)] - волновое число, [pic]- единичный вектор в направлении

распространения волны (см. Рис. 11).)

[pic]

Рис. 11

Выясним закон преобразования частоты и волнового вектора при переходе

в другую инерциальную систему отсчета. Будем для определенности считать,

что волна распространяется под углом ? к оси 0x, вдоль которой со скоростью

V движется "штрихованная" система отсчета S'. Из Рис. 11 видно, что

существуют пространственно - временные точки, в которых векторы поля

обращаются в нуль (узловые точки волны - те точки, в которых косинус равен

нулю). Ясно, что это свойство поля носит объективный характер и должно

выполняться во всех инерциальных системах отсчета. Отсюда следует, что фаза

электромагнитной волны должна быть инвариантна!

| |

|> |

|k |

| |

|· |

|> |

|r |

| |

|- ?t = |

|> |

|k |

| |

|' |

| |

|· |

|> |

|r |

| |

|' |

| |

|-?' t'. |

| |

В декартовых координатах это условие принимает вид:

|kx x +ky y + kz z -? t = kx' x' |(24) |

|+ky' y' + kz' z' - ?' t'. | |

| | |

Поскольку x, y, z, t связаны с x', y', z', t' преобразованием Лоренца , то

для обеспечения инвариантности фазы необходимо, чтобы выполнялись

преобразования

|?' = |(25) |

|?- V kx | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - V2/c2 | |

| | |

| | |

| | |

| | |

|, kx' = | |

|kx - V/c2 ? | |

|[pic] | |

| | |

| | |

| ________ | |

|?1 - V2/c2 | |

| | |

| | |

| | |

| | |

|, ky' = ky, kz' = kz. | |

| | |

Прямой подстановкой формул (25) в соотношение (24) можно проверить

его выполнение.

Найдем теперь связю между частотой ?0 в системе источника волны и

частотой ? той же волны в системе наблюдателя.

Полагая в первой формуле из (25) ?' = ?0, kx = [(?)/( c)] cos?, где

?- угол распространения волны относительно V в системе наблюдателя

(приемника), найдем

|? = ?0 |(26) |

| | |

| | |

| ________ | |

|?1 - V2/c2 | |

| | |

| | |

| | |

|[pic] | |

|1 - (V/c)cos? | |

|. | |

| | |

Эта формула выражает собой эффект Доплера - изменение частоты волны,

вызанное относительным движением источника и приемника.

При V/c 0) и убывает

при их удалении (V|| < 0) продольный эфект Доплера. Если относительная

скорость направлена перпендикулярно лучу зрения (cos? = 0), то уменьшение

частоты представляет собой эффект, квадратичный по V/c:

|?? = - |

|?0 |

|[pic] |

|2 |

| |

|? |

|? |

|? |

| |

|V |

|[pic] |

|c |

| |

|? |

|? |

|? |

|2 |

| |

| |

| |

| |

- поперечный эффект Доплера.

При выводе последних двух формул учтено, что при V/c << 1

| |

|1 |

|[pic] |

|1 - (V/c)cos? |

|? 1 + (V/c)cos?, |

| |

| ________ |

|?1 - (V/c)2 |

| |

|? 1 - (V/c)2/2. |

| |

Красное смещение (в сторону волн большей длины) наблюдаемое на Земле в

спектрах излучения далеких галактик по сравнению с эталонными линиями

интерпретируется как эффект раширения Метагалактики (наблюдаемой части

Вселенной) - взаимного удаления галактик друг от друга. В 1928 г. Э.

Хабблом было обнаружено, что скорости разбегания галактик приблизительно

пропорциональны расстоянию до них:

|v ~ |

|H R. |

| |

Константа Хаббла H ? 50 ч100 км/(с·Мпк). Значение H-1 ? 13 млрд. лет

определяет время, истекшее с начала расширения Метагалактики при условии

постоянной скорости расширения.

Заключение

ОТО — завершенная физическая теория. Она завершена в том же смысле,

что и классическая механика, классическая электродинамика, квантовая

механика. Подобно им, она дает однозначные ответы на физически осмысленные

вопросы, дает четкие предсказания для реально осуществимых наблюдений и

экспериментов. Однако, как и всякая иная физическая теория, ОТО имеет свою

область применимости. Так, вне этой области лежат сверхсильные

гравитационные поля, где важны квантовые эффекты. Законченной квантовой

теории гравитации не существует.

ОТО — удивительная физическая теория. Она удивительна тем, что в ее

основе лежит, по существу, всего один экспериментальный факт, к тому же

известный задолго до создания ОТО (все тела падают в поле тяжести с одним и

тем же ускорением). Удивительна тем, что она создана в большой степени

одним человеком. Но прежде всего ОТО удивительна своей необычайной

внутренней стройностью, красотой. Не случайно Ландау говорил, что истинного

физика-теоретика можно распознать по тому, испытал ли человек восхищение

при первом же знакомстве с ОТО.

Примерно до середины 60-х годов ОТО находилась в значительной мере

вне основной линии развития физики. Да и развитие самой ОТО отнюдь не было

весьма активным, оно сводилось в большой степени к выяснению определенных

тонких мест, деталей теории, к решению пусть важных, но достаточно частных

задач.

Вероятно, одна из причин такой ситуации состоит в том, что ОТО

возникла в некотором смысле слишком рано, Эйнштейн обогнал время. С другой

стороны, уже в его работе 1915 года теория была сформулирована в достаточно

завершенном виде. Не менее важно и то обстоятельство, что наблюдательная

база ОТО оставалась очень узкой. Соответствующие эксперименты чрезвычайно

трудны. Достаточно напомнить, что красное смещение удалось измерить лишь

спустя почти 40 лет после того, как было обнаружено отклонение света в поле

Солнца.

СТО возникла больше для решения специальных задач и никоим образом

не противоречит принципам ОТО. Она лишь дополнение реального состояния

науки с точки зрения потребности современной физики и естествознания.

Релятивизм не мертв, он лишь отражение состояния научно-технической мысли

того времени.

Тем не менее, в настоящее время СТО — бурно развивающаяся область

современной физики. Это результат огромного прогресса наблюдательной

астрономии, развития экспериментальной техники, впечатляющего продвижения в

теории.

Список использованных источников

1. “Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский;

ОНТИ ; 1935 г., стр. 134

2. Полное собрание трудов, Л. И. Мандельштам; Том 5, стр. 172

3. А.Эйнштейн. К электродинамике движущихся сред. - М.: 1966.

4. "Общая теория относительности"; Н. В. Мицкевич; Москва., 1927 г

5. "Парадоксы теории относительности"; Я. П. Терлецкий; Москва., 1965 г.

6. Л.В. Тарасов, Современная физика в средней школе. М.: Просвещение,

1990.

7. В.Н. Дубровский, Я.А. Смородинский, Е.Л. Сурков, Релятивистский мир.

(Библиотечка "Квант", выпуск 34). М.: Наука, 1984.

8. Э.Тейлор, Дж. Уилер, Физика пространства - времени. М.: Мир, 1969.

9. И.И. Гольденблат, Парадоксы времени в релятивистской механике. М.:

Наука, 1972.

10. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик, 1001 задача по физике с

ответами, указаниями, решениями. Москва - Харьков, Илекса. 1997.

11. И.И. Воробьев Теория относительности в задачах. М.: Наука, 1989.

12. П.В. Елютин, Г.А. Чижов, Словарь-справочник по элементарной физике.

Часть 3. М., 1995.

13. Эйнштейн, Л.Инфельд. Эволюция физики. - М.: 1966.

14. В.Л.Гинзбург. О теории относительности. - М.: Наука, 1970.

15. Г.Линдер. Картины современной физики. - М.: Мир, 1977.

16. А.В.Горелов. Элементы теории относительности- элементарное изложение

специальной теории относительности.

17. П.А.М.Дирак. Воспоминания о необычайной эпохе. - М.: Наука, 1990.

-----------------------

[pic]

Рис.1. Сферический треугольник

Рис. 2. Гравитационная линза. Осесимметричный случай.

S — источник, L — линза; O — наблюдатель

Рис.3. Гравитационная линза. Общий случай.

S — проекция источника на фронтальную плоскость,

L — проекция линзы, I1, I2 — изображения источника

Страницы: 1, 2, 3


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.