![]() |
|
|
Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалахі конформації, зумовлені тепловим рухом. Таким чином, полімери мають цілий ряд характеристик (конфігурація, конформація, молекулярна маса) і характерних ознак: . конфігураційні ознаки - розгалуженість або сітсчатість структури . будова основного ланцюга – гомоланцюгові полімери (ланцюг складається а однакових атомів), гетероланцюгові (ланцюг – складається з атомів двох або більше видів). . полярність, визначається будовою як основною ланцюга, так і бокових груп. Граничний варіант полярних полімерів – поліелектроліти. . дифільність або амфіфільність, тобто здатність одних частин макромолекули віддавати перевагу, наприклад, полярному оточенню, а інших - неполярному. Дифільність більш характерна для пополімерів, що мають два або більше типів ланок. . полідисперсність, тобто існування деякого статичного розподілу макромолекул по ступенях полімеризації (для гомополімерів), і по складу (для сополімерів). 4 Структура полімерів. Загальні характеристики, основні поняття. Структура полімерів - це взаєморозміщення в просторі, внутрішня будова і характер взаємодії (зв’язку) між структурними елементами, що утворюють макроскопічне тіло. У даному визначенні використовується термін структурний елемент, який потребує пояснення, і який є запозиченим із статистичної фізики: Структура будь-якого фізичного тіла - це набір поступово ускладнених підсистем, що володіють певною обмеженою автономністю. Число виділених підсистем може бути більшим за одиницю. Наприклад, в металах необхідно розглядати як мінімум дві підсистеми: ансамбль іонізованих атомів, що утворюють - кристалічну гратку; і електронів (електронний газ), що відповідають за макроскопічні електромагнітні властивості. У випадку простих діелектриків виділена система - молекула, в більшості випадків дипольна, а в випадку полімерів - макромолекула, що володіє складною структурою. Структурний елемент - характеристична частинка, яка утворює у величезній сукупності собі подібних відповідну підсистему, яка характеризує рівень структурної організації.[3] Велика заслуга в поясненні характерних властивостей полімерів на структурній основі належить академіку В.А. Каргіну, який встановив, що однією із важливих особливостей полімерів є достатньо велика різноманітність їх надмолекулярних структур.[1] Структурні елементи макромолекул – ланки ланцюгів. Макромолекули, особливо лінійні чи помірно розгалужені, слід виділяти в особливу підсистему, оскільки їх властивості дозволяють пояснити полімерний стан як особливу форму конденсації речовини. Значить, властивості макромолекул (закодована в них структурна інформація) передаються через всі наступні НМО полімерів. Надмолекулярні структуроутворення. Згідно поглядів Каргіна, Китайгородського і Сломінського полімери являють собою систему, яка складається з кристалічних і аморфних областей, які утворюють єдину складну фазу. При цьому в таких системах спостерігається утворення з десятків щільно складених, переважно паралельно, макромолекул – пачок. Пачкову будову мають жорстколанцюгові аморфні полімери. Більш гнучкі макромолекули легко згортаються в так звані глобули. У результаті подальшої організації “пачок” виникають фібрилярні утворення. Характер таких надмолекулярних структур визначається умовами синтезу полімера і отримання із нього зразків.[1] Фазовий стан і фазові перетворення полімерів. Полімери можуть знаходитися в кристалічному, рідкому, рідкокристалічному фазовому стані. У кристалічному фазовому стані наявний трансляційний порядок в розміщенні частин макромолекули, що утворює кристалографічну комірку, в рідкому – тільки ближній. Рідкокристалічний фазовий стан є проміжним між кристалічним і рідкім. В рідкокристалічному фазовому стані макромолекули розміщені паралельно одна відносно одної і мають ближній орієнтаційний порядок. Поняття “фазовий стан ” не співпадає з поняттям “агрегатний стан”. рідкий фазовий стан за агрегатним станом може бути твердим (склоподібним чи високоеластичним) і рідким (в’язкотекучим). Фазові перетворення полімерів (фазові переходи) – це перехід речовини із одного стану в інший. при фазових переходах відбуваються зміни температури, тиску, напруги або інших зовнішніх термодинамічних параметрів ; вони можуть супроводжуватись стрибкоподібними змінами термодинамічних і структурних характеристик полімерної системи. Для більшості полімерів характерні фазові переходи першого і другого роду. При фазовому переході першого роду густина і енергія полімерної системи змінюється стрибкоподібно. Прикладами такого фазового переходу може бути кристалізація, плавлення, переходи між рідкокристалічними і аморфними станами. при фазовому переході другого роду стрибкоподібно змінюються такі параметри: теплоємність стисливість, об’ємний коефіцієнт теплового розширення. Такими переходами є перехід феромагнетика в парамагнетик, а в полімерах – температурний перехід через точку розшарування полімерного зразка. 5 Формування властивостей полімерів за допомогою наповнювачів. Для зміни експлуатаційних характеристик полімерних матеріалів і створення гетерогенних систем з новими показниками використовують наповнювачі. Наповнення ВМС зумовлює збільшення міцності, тепло- і термостійкості, жорсткості та інших властивостей систем. Наповнення полімерів - це зміщування полімера з твердою, рідкою чи газоподібною речовиною, яка відносно рівномірно розподіляється в об’ємі утвореної композиції і має чітко виражену границю з неперервною полімерною фазою (матрицею). Наповнення полімерів є одним із способів отримання пластмас, гуми, лакофарбових матеріалів, синтетичного клею. У більшості випадків для отримання наповнених полімерів застосовуються тверді наповнювачі: тонкодисперсні з частинками зернистої (двуокис кремнію, крейда, каолін, метали і т.д.) або пластинчастої (графіт, тальк, слюда) форми, а також різноманітні волокнисті матеріали, що застосовуються у вигляді елементарних волокон, ниток, джгутів, сіток, матів. В особливу групу, серед твердих наповнювачів, виділяють так звані еластифікатори, якими служать полімери з низьким модулем пружності, що використовуються в поєднанні з такими жорсткими полімерами, як полістирол і більшість реактопластів. Численні експериментальні дослідження наповнених полімерних систем підтвердили перспективність використання в якості наповнювачів полімерів високодисперсних металевих порошків, зокрема, порошків нікелю, алюмінію, заліза, золота, молібдену, цинку, сплавів олова, германію і галію та інші. За основу для виготовлення полімерних матеріалів наповнених металами найчастіше використовують (феонолформальдегідні смоли, поліаміди, полівінілхлорид, поліметилметакрилат, полістирол, різноманітні еластоміри. Введення таких наповнювачів сприяє не тільки зміні електропровідності і теплопровідності полімерних матеріалів, а і зміні інших фізико-механічних характеристик. Метали і окисли можуть в полімерних системах виконувати різну роль - бути наповнювачами, пігментами, зшиваючими агентами, стабілізаторами і т.д. Зростаюче виробництво азотних мінеральних добрив і фосфорної кислоти проводить до інтенсивного збільшення відходів ці’ї галузі хімічної промисловості у вигляді фосфогіпсу і огарки. Проведені дослідження і розрахунки показують, що їх можна використовувати в якості наповнювачів, зокрема, для покращання якості виробів на основі полівінілхлориду (ПВХ) і полівінілбутиралю (ПВБ). Необхідною умовою ефективного використання наповнювачів є суміщення компонентів, яке в значній мірі визначає здатність полімера змочувати поверхню частинок наповнювача, яка в свою чергу залежить від характеру полімерного середовища з активними центрами поверхні. Змочування полімерами, які знаходяться у в’язкотекучому або високоеластичному і, по меншій мірі, в розчиненому станах, суттєво відрізняється від змочування низькомолекулярними середовищами. Обмежена рухливість макроланцюгів і надмолекулярних утворень обмежує розтікання полімера по поверхні. Прагнення гнучких ланцюгових молекул до збереження найбільш вигідних конформацій приводить до того, що густина контактів виявляється меншою очікуваної (виходячи тільки з питомої поверхні наповнювача. Таким чином, питання взаємодії полімерів з наповнювачами є предметом багатьох досліджень, поскільки характер взаємодії між компонентами в таких системах набуває вирішального значення і визначає властивості матеріалів, які отримуються. Роль граничних шарів у формуванні властивостей систем. У полімерних композиційних матеріалах значна частина в’яжучого полімера знаходиться під безпосереднім впливом наповнювача. При взаємодії полімерної матриці з наповнювачем на границі їх розділу утворюється граничний шар. Граничний або поверхневий шар речовини поблизу поверхні твердого тіла можна означити як шар, властивості якого змінюються під впливом поля поверхневих сил порівняно з властивостями в об’ємі. Цей шар характеризується ефективною товщиною за межами якої відхилення величин локальних властивостей від їх об’ємних значень стає несуттєвим.[3] Релаксаційні процеси в полімерах, які знаходяться на межі розділу компонентів полімер-наповнювач, викликають теоретичний і практичний інтерес у зв’язку з проблемою створення конструкційних наповнених полімерних матеріалів і знаходження оптимальних умов переробки і експлуатації. Наявність граничного шару приводить до зміни температури силування, механічних характеристик і цілого ряду інших властивостей гетерогенної полімерної системи. Це зв’язано із зміною густини молекулярної упаковки, зменшенням рухливості сегментів полімерних ланцюгів і більш масштабних кінетичних елементів внаслідок їх взаємодії з твердою поверхнею. Зміна молекулярної рухливості приводить до суттєвих змін ефективних характеристик граничних шарів полімерів. На границі розділу полімер-наповнювач відбуваються зміни густин розміщення кінетичних елементів полімерної матриці, в той же час сама поверхня може служити центром формування певних структур. Властивості гетерогенних систем визначаються часткою полімера, зосередженою в граничному шарі.[3] РОЗДІЛ 2 6 Дослідження густини полімерних композицій в залежності від об’ємного вмісту наповнювача. Експериментальні дані. Проведемо дослідження густини полімерної системи залежно від вмісту наповнювача. Виготовлення зразків проведемо методом механічного змішування полімера з наповнювачем.[1] Для цього в якості наповнювача використаємо огарку. Перед введенням наповнювача в полімер (використаємо полівінілхлорид ПВХ) його (наповнювач) обезжирюють CCl4 , а потім висушують у вакуумі при температурі 393 К. Потім ПВХ та наповнювач змішуємо і методом гарячого пресування отримуємо зразки для дослідження. При дослідженні фізико-хімічних властивостей полімерних систем для аналізу залежностей властивість-концентрація зручно розглядати вміст наповнювача в об’ємних частках (об. Технологія формування зразків пов’язана з масовим вмістом наповнювача (м . Між (об і (м існує взаємозв’язок: [pic] (1 – густина полімерної матриці, (2 – густина наповнювача. Розрахунок залежності між (об і (м наведено у табл. кольорового додатку 1. Визначення густини полімерної композиції виконаємо методом гідростатичного (точного) зважування. [1]. В основу цього методу покладено закон Архімеда. При цьому зважування зразка відбувається у повітрі, а потім повторюється у воді (гідростатичне зважування). Позначимо FA1 – сила Архімеда, яка діє на тіло в повітрі, FТ1 – сила тяжіння, FA2 – сила Архімеда, яка діє на різноважки, FТ2 – сила тяжіння, яка діє на різноважки в повітрі. При рівновазі терезів буде справедливою рівність: FТ1 –FA1=FТ2 –FA2 (1) Виразивши сили через густину тіл і повітря та їх об’єми та провівши математичні перетворення[1], отримаємо формулу для обчислення густини досліджуваного тіла: [pic] (2) m – маса різноважків, m1 – маса різноважків, які зрівноважують тіло при зважуванні у воді, (0 , (в , (п – відповідно густини досліджуваного зразка, води і повітря. Врахуємо, що під час зважування тіло утримується на нитці, тоді обчислення густини досліджуваного тіла буде проводитись за формулою: [pic] (3) mн – маса нитки, m – маса різноважків, m1 – маса різноважків, які зрівноважують тіло при зважуванні у воді. В результаті виконання досліду була отримана експериментальна залежність значень густини від вмісту наповнювача для системи ПВХ+огарка: Табл. 2.2-1 Залежність (0 від (об для системи ПВХ+огарка. |(об, % |(0(10-3(кг/м3) | |ПВХ чистий |1,34 | |0,1 |1,35 | |0,3 |1,37 | |0,5 |1,39 | |1,0 |1,41 | |2,0 |1,43 | |3,0 |1,44 | |5,0 |1,45 | |10,0 |1,46 | |20,0 |1,52 | |50,0 |1,77 | Для підтвердження результатів експерименту проведемо теоретичні розрахунки і побудуємо графіки залежності для отриманих значень. Теоретичні розрахунки. Для інтерпретації експериментальних даних густини полімерних композицій їх співставляють з теоретичними розрахунками густини. Теоретичні розрахунки проводять за формулами адитивності. Скористаємося формулою для обрахунку густини композиції, яка наведена у [1]: [pic] , де (4) (0 , (п , (н – відповідно густини досліджуваного зразка, полімера і наповнювача, (п і (н – відповідно об’ємний вміст полімера і наповнювача в композиції. Для обрахунків використаємо табличний процесор Microsoft Excel., який дозволяє на основі введених і розрахованих значень побудувати графіки залежностей. Проведені розрахунки і побудований графік дивися у кольоровому додатку 1. Порівняння теоретичних розрахунків з результатами експериментального дослідження. Аналізуючи отримані результати необхідно відмітити існування деякої розбіжності між теоретичними розрахунками і експериментальними даними. Ми бачимо, що густина полімерної композиції ПВХ+огарка зростає з вмістом наповнювача. Найбільш інтенсивно, за дослідними даними, густина композиції зростає в області концентрації вмісту наповнювача від 0,5% до 3 % об’ємного вмісту наповнювача. В області 3% - 7% спостерігається “плато”. Від 10% до 30% відбувається плавне зростання густини композиції. Відмінності, які виникли можна пояснити тим, що при теоретичних розрахунках було використано двокомпонентну модель ПВХ+наповнювач. Для точнішого розв’язку даної задачі необхідно врахувати, що при взаємодії полімерної матриці з частинками наповнювача утворюється міжфазний шар, який суттєво впливає на теплофізичні і властивості гетерогенних систем. В зв’язку з існуванням граничного шару полімерну композицію потрібно розглядати, як трикомпонентну. В результаті густини системи потрібно розраховувати: [pic] (5) (0 , (п , (н, (гш – відповідно густини досліджуваного зразка, полімера, наповнювача і густини граничного шару полімер-наповнювач , (п – об’ємний вміст полімера, (н – об’ємний вміст наповнювача в композиції, і (гш – відповідно граничного шару. 7 Дослідження об’ємного вмісту граничного шару в композиції. Теплофізичні властивості полімерів залежать від їх будови і особливостей протікання молекулярно-кінетичних процесів на молекулярному і надмолекулярному рівнях. При розгляді процесу теплопровідності в полімерах використовують уявлення про теплоперенос в діелектриках. В полімерах розглядають два механізми теплопереносу: 1. Дифузійний перенос, згідно якого отримуються низькі значення (. 2. Зумовлений вібрацією енергетичних структур, при яких термозбудження виникає в у вигляді фононів, що призводить до більш ефективної передачі тепла. Для чистого ПВХ температурна залежність ( добре лписується емпіричним рівнянням: (=(0=1,36(104Т –0,2(10-6Т2, де (0 – коефіцієнт теплопровідності ПВХ, рівний 0,148 Вт/м(К при Т = 290К. Для розрахунку ( композицій використовують принцип узагальненої теплопровідності, враховуючи, що характерною особливістю структури таких систем являється неперервність полімерної матриці в довільному напрямку і дискретне розміщення частинок наповнювача, а також існування граничного шару на межі поділу фаз. Під час визначення ефективного коефіцієнта теплопровідності випливає, що його значення залежить від коефіцієнта теплопровідності граничного шару[1], а саме ( для елементарної комірки рівний: [pic] (6) У формулі (6) фігурує ефективна товщина ГШ –, яка являється однією з кількісних мір взаємодії полімера з наповнювачем. Визначення lгш дозволяє розрахувати об’ємний вміст граничного шару у гетерогенній полімерній системі. Розглянемо метод її визначення запропонований у [1]. В наповнених полімерних системах дисперсна частинка наповнювача оточена ГШ, що являє собою третю компоненту. В області вмісту наповнювача менш критичного ((н<(кр) високодисперсний наповнювач не знаходиться в вузлах регулярної структури, займає випадкові положення в просторі. Хаотичне розміщення частинок наповнювача, в цьому випадку, важко визначити математично, як це можна зробити в кристалічній решітці. Однак, при (н<(кр наповнену систему можна як і раніше моделювати вигляді сукупності частинок наповнювача, розділених полімерним прошарком lп, на яких адсорбований ГШ товщиною lгш.. Таким чином, L= lп+ 2lгш., де L – відстань між двома частинками наповнювача. В міру зростання вмісту наповнювача в системі все більша кількість полімерної матриці переходить в стан ГШ. Із рівняння адсорбційної ізотерми слідує, що маса ГШ m1 в розрахунку на полімер рівна: m1= М(1 – е-(N) (7) де ( – коефіцієнт пропорційності, N – число частинок наповнювача, М – маса полімерної матриці. Розглянувши ГШ, як сферичний прошарок товщини lгш отримаємо, що ефективний об’єм ГШ полімерної системи, що містить N частинок наповнювача, буде рівним: [pic], (8) Із рівняння (7) маємо: [pic] (9) Коефіцієнт ( визначимо, як міру активності наповнювача, на основі стрибка теплоємності для наповненого [pic]і ненаповненого [pic]полімера: [pic] (10) При (кр ( (н трикомпонентна система виродиться в двохкомпонентну типу наповнювач-ГШ. Коли буде виконуватись умова (кр = (н, а це можливо для рівномірно диспергованих частинок в полімері, отримаємо залежність: [pic] (11) де (п – густина полімерної матриці. Підсумовуючи необхідно відмітити, що об’ємний вміст граничного шару на межі розподілу фаз полімера і наповнювача впливає на такі теплофізичні характеристики полімерної композиції, як ефективний коефіцієнт теплопровідності та інші. Аналізуючи результати оцінки (табл. 2.3-1), отримані у [1] під час вимірювання (гш можна зробити наступні висновки. Табл. 2.3-1 |Композиція|(об, % |(гш, |Композиція|(об, % |(гш, | | | |Вт/м(К | | |Вт/м(К | |ПВХ+W |0,07 |0,18 |ПВХ+Cu |0,12 |0,26 | | |0,22 |0,23 | |0,38 |0,29 | | |0,37 |0,24 | |0,64 |0,32 | | |2,90 |0,34 | |1,40 |0,37 | | |6,60 |0,39 | |5,00 |0,47 | | |9,50 |0,42 | |11,00 |0,52 | | |14,10 |0,45 | |16,60 |0,57 | | |21,90 |0,47 | |22,30 |0,61 | | |38,70 |0,50 | |33,10 |0,64 | | |50,10 |0,55 | |50,30 |0,70 | | |60,30 |0,62 | |60,10 |0,81 | Отримані результати по визначення ефективного коефіцієнта теплопровідності граничних шарів ПВХ і ПВБ систем представлені в табл. 2.3-1. Із аналізу якої слідує, що з підвищенням концентрації наповнювача в композиції спостерігається зміна (гш. Так, для систем ПВХ по мірі збільшення вмісту W або Cu в композиції (гш зростає в усьому діапазоні концентрацій наповнювача. При цьому (гш залишається більшим ( ПВХ. Крім того, (гш близький до ( ПВХ-систем У випадку ІІВБ-композицій при вмісті наповнювача меншому за критичний має місце екстремальне значення (гш . Найбільш суттєві зміни (гш спостерігаються при вмісті W чи Сu до 6 об. %. Саме для цієї області вмісту низькомолекулярних наповнювачів відмічається найбільш інтенсивна зміна ряду інших властивостей композицій. При подальшому збільшенні вмісту W і Сu в системі (гш після досягнення екстремального значення має тенденцію до зменшення до області 15 у 20 об. % наповнювача. Наступне збільшення вмісту високодисперсного W чи Сu знову приводить до росту (гш . Таку залежність можна пояснити "конкуруючими" ефектами, зв'язаними з зміцненням і розрихлюючою дією поверхні наповнювача на полімерну матрицю. Значить, чим більш активний наповнювач у відношенні до ПВХ чи ПВБ, тим більш інтенсивно, в області незначного вмісту (до 6 об. %), проявляється роль ГШ в формуванні теплофізичних властивостей композицій. ВИСНОВКИ. Введення наповнювача в полімер призводить до утворення речовин, властивості яких значно відрізняються від ненаповненого полімера. Наповнення полімера високодисперсними матеріалами характеризується виникненням фазового шару. Граничний шар – це прошарок полімера, властивості якого змінюються під дією поверхні в порівнянні з властивостями полімера або наповнювача в об’ємі. Цей міжфазний шар характеризується деякими досить умовними параметрами: товщина граничного шару, коефіцієнт теплопровідності. Визначити ці параметри безпосередньо дуже складно, тому їх визначають на основі інших характеристик. Встановлено, що існування межі поділу призводить до суттєвих змін релаксаційної поведінки полімера в міжфазному прошарку, зміні температур склування полімера і також інших властивостей полімерної системи.[3] Все це зв’язано з зміною густини молекулярної упаковки, а також з зменшенням рухливості сегментів полімерних ланцюгів і більших кінетичних елементів внаслідок їх взаємодії з твердою поверхнею. Властивості гетерогенних полімерних систем визначаються кількістю полімера, який знаходиться в міжфазному прошарку. Кількісний зв’язок між властивостями міжфазного шару, об’ємним вмістом наповнювача і комплексом властивостей полімерних композицій потребує подальшого вивчення. ВИКОРИСТАНА ЛІТЕРАТУРА. 1. Колупаєв Б.С., Ліпатов Ю.С., Бордюк М.А., Дем’янюк Б.П. Вивчення полімерних матеріалів в загальноосвітній школі: навчальний посібник. – Рівне, 1993 р., 92 с. 2. Колупаев Б.С. Релаксационные и термические свойства наполненных полимерных систем. - Львов: Вища школа, 1980. 3. Липатов Ю.С. Физико-химические основы наполнения полимеров. - М.: Химия, 1991. 4. Дулънев ?.H„ Новиков В.В. Процессы переноса в неоднородных средах .- Л.: Энергоатомиздат, 1991. 5. Бордюк М.А. Волошин О.М., Колупаев Б.С., Липатов Ю.С.//УФЖ.- 1996- 41, № 4 -c.438-441. 6. Годовский Ю.К. Теплофизика полимеров,- М.: Химия, 1982. 7. Колупаев Б.С. Физико-химия полимеров,- Львов: Вища школа, 1976. 8. Колупаев Б.С; Демьянюк Б.П., Муха Б.И. Бордюк Н.А. //Композиц. полимер. материалы- 1984 - Вып. 23 - с.20-23. 9. Бордюк Н.А., Колупаее Б.С., Волошин О.М. // Физика и техника высоких давлений.-1995-№3-с.49-58. 10. Колупаєв Б.С., Бордюк М.А., Ліпатов Ю.С. //Доп. НАН України - 1995 - № 8 -с. 112-114. 11. Кравченко С. Мониторы завтрашнего дня.//Chip. №11 – 1999 р., ст.24-26. ----------------------- [pic] [pic] Рис. 1.2-1. [pic] [pic] [pic] Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |