реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Введение основных понятий в оптику

они собираются, а затем, расходятся.

Во втором опыте показывается схождение, а затем расхождение пучка света.

Аналогичные опыты ставятся с рассеивающими линзами.

Вводятся понятия об оптическом центре линзы, о главной и побочной

оптической оси, переднем и заднем фокусе, фокусном расстоянии, фокальной

плоскости, о действительном и мнимом фокусе. Здесь важно подчеркнуть

следующее:

. положение фокуса определяется для параксиальных (приосевых) лучей и

для линз с малой кривизной поверхностей;

. Световые пучки неодинаковой цветности собираются в разных точках;

. Параллельный пучок белого света собирается линзой почти в одной точке

при условии сохранения параксиальности лучей;

. Переднее и заднее фокусные расстояния несимметричной линзы одинаковы;

. Луч в направлении к оптическому центру линзы смещается ею тем меньше,

чем она тоньше.

Таким образам, в школе изучаются тонкие линзы и приосевые световые пучки.

При изложении понятия об оптической силе линзы полезно разъяснить

следующее: оптическая сила системы сложенных вместе тонких линз равна

алгебраической сумме (с соблюдением правила знаков) оптических сил этих

линз; для определения оптической силы рассеивающей линзы необходимо

измерить оптическую силу системы, состоящей из данной рассеивающей и

собирающей линзы большей оптической силы, а затем вычесть последнюю из

результата, полученного для системы линз. Это может быть проверено на

практическом занятии.

Роль линз в концентрации энергии света полезно показать на опыте, в котором

приемником излучения является фотоэлемент или чувствительная термопара

(рис.6). От маленького источника света 1 излучение через диафрагму 2

направляется на приемник энергии 3, который соединен с электроизмерительным

прибором 4. После того как диафрагма закрывается собирающей линзой 5,

показания прибора возрастают.

Затем показывается изображение светящейся точки в линзе. В качестве

источника света берется лампочка, помещенная в футляре с малым круглым

отверстием. Вначале экран (матовое стекло, белая плотная бумага) медленно

перемещается вдоль оси светового пучка и «прощупывается», как он

формируется, переходит от сходящегося в расходящийся, и в месте этого

перехода обнаруживается изображение. Рассеивание света от экрана дает

возможность учащимся видеть изображение точки.

Геометрические построения проводятся для трех случаев: когда точечный

источник света находится в стороне от оптической оси, на самой оси и на

расстоянии от оси, большем радиуса главного сечения линзы. Обращается

внимание на то, как перемещается изображение, если источник света движется

к оптической оси и от неё, вправо и влево; как определить область видения

изображения.

На рисунке 7-а толстыми линиями показаны лучи, выбранные для построения

изображений светящейся точки S; тонкими линиями изображены границы

светового пучка, падающего на линзу. После преломления все лучи

пересекаются в точке S1.

Для построения изображения светящейся точки, находящейся на главной

оптической оси (рис 7-б), проводят любую линию к линзе, а затем строят

вспомогательную линию (штриховая), параллельную данной и проходящую через

оптический центр линзы. Она пересекает главную фокальную плоскость. Через

эту точку пересечения пройдет и первый луч. Наконец, через точку S1

пройдут все лучи светового пучка, падающего на линзу.

На рисунке 7,в дано построение изображения точки в линзе, если она

находится в стороне от оптической оси на расстоянии, большем радиуса

главного сечения линзы. Относительно этой линии и строится изображение.

Реальный пучок света ограничен на рисунке тонкими линиями.

Чтобы чертеж был более выразительным, лучи, ограничивающие весь пучок

света, падающего на линзу, можно изобразить мелом (в тетрадях ученики

рисуют обычным карандашом), а лучи, служащие для геометрического построения

изображения, - цветным мелком (в тетрадях цветным карандашом) или толстыми

линиями. Точечный источник света S (см. рис 7.) виден в пределах 4(

стерадиан, а изображение – лишь в пределах ограниченного угла, зависящего

от диаметра главного сечения линзы. Применив плоский рассеивающий экран,

можно сделать изображение источника света видимым всему классу. Наконец,

показывается, что светящаяся точка и её изображение сопряжены.

Методика изучения темы “волновые свойства света”. Интерференция света.

В качестве основного эксперимента по интерференции выбирают опыт Юнга,

зеркала или бипризму Френеля или наконец, кольца Ньютона. Опыт Юнга

действительно прост по своей идее, не требует дополнительного построения

лучей, как в других опытах, числовой расчет несложен и, наконец, на

волновой ванне легко осуществить аналогичный опыт. Однако он связан с

явлением дифракции на щелях. Для истолкования опыта с зеркалами или

бипризмой Френеля необходимо знать лишь соответственно закон отражения или

преломления. И не смотря на то что явление отражения проще преломления,

построение отраженных пучков и мнимых источников в двух зеркалах

представляется более сложным, чем в бипризме. Поэтому опыт с бипризмой

Френеля желательно выбрать в качестве исходного по интерференции.

Кольца Ньютона или цвета тонких пленок могут быть рассмотрены в качестве

дополнительных иллюстраций.

Внимание учащихся надо обратить на то, что прямым доказательством волновой

природы света явилась интерференция. Свет, прибавленный к свету, не только

усиливает свет, но может ослабить его и даже гасить. Ставятся два опыта,

подтверждающие это, - с волнами на воде и со светом.

Принцип действия волновой ванны следующий. Волны на поверхности воды

(рис.8) действуют как рассеивающие (А, В) и собирающие (C, D, E) линзы.

Поэтому на соответствующих участках экрана будет усиление или ослабление

света (вне связи с явлением интерференции).

Два вибратора, насаженные на стальную пластинку и совершающие колебания

синхронно, при погружении в воду дают две системы круговых водяных волн,

которые, интерферируя, образуют ряд максимумов и минимумов. Так как волны

рассматриваются в теневой проекции, то будут видны темные и светлые полосы.

Полезно показать опыт при одной, а затем при другой частоте колебаний

стальной пластинки, для чего её длину следует изменить. Картина

интерференции от этого не изменится – будут лишь другими расстояния между

максимумами и минимумами интенсивностей колебаний.

Оптический опыт ставится с набором А.П. Кузьмина[2]. Пучок свет,

полученный после конденсора проекционного фонаря 1 (рис.9), равномерно

освещает узкую вертикально расположенную щель 2. Щель является источником

излучения для призмы Френеля 3,помещенной от неё на расстоянии 10 – 15 см.

Затем два пучка света проходят через светофильтр 4, расположенный в

деревянной рамке, как для проекции диапозитива. В пазы этой рамки помещены

раздельно два светофильтра, например красный и синий. Наконец на расстоянии

до 2 м от бипризмы на демонстрационном столе размещается переносной белый

экран 5 размером примерно 30Х50 см. Длина щели и ребро бипризмы должны быть

параллельны. Если дополнительно используется цилиндрическая линза, то

образующая также должна быть параллельна щели. Вначале добиваются этой

параллельности, а затем щель сужается до 0,15 – 0,1 мм.

Для увеличения ширины интерференционной картины и видимости ее всему классу

плоскость экрана располагается под большим углом к оптической оси

установки. Дается схема распространения световых волн через бипризму

(рис.10).

Опыт ставится с красным, а затем с зеленым или синим светофильтром.

Обращается внимание, что в середине интерференционной картины образуется

светлая полоса А (по цвету светофильтра), а с обеих сторон от нее –

чередующиеся темные и светлые полосы. Так как изменение расстояния между

этими полосами при смене светофильтра в классном опыте трудно заметить,

можно показать фотографии интерференционных полос в разных цветах.

Для увеличения ширины интерференционной картины и видимости её всему классу

плоскость экрана располагается под большим углом к оптической оси

установки.

Дается следующее определение: явление интерференции состоит в наложении

световых пучков, в результате которого образуется устойчивая картина

чередующихся светлых и темных полос.

На основе знаний, полученных учащимися из раздела о механических колебаниях

и волнах, разъясняется, почему колебания в одних местах усиливаются, а в

других ослабляются.

Разъясняется, что:

. В каждой точке пространства, где волны сходятся, имеет место сложение

колебаний;

. Разность фаз (( двух колебаний в каждой точке со временем не

изменяется;

. В разных точках пространства сдвиг фаз неодинаков. Поэтому в одних

точках колебания друг друга усиливают, а в других ослабляют;

. При интерференции выполняется закон сохранения энергии.

Первый вывод состоит в том, что явление интерференции можно объяснить

только на основе волновой теории. Значит, свет имеет волновую природу.

Далее определяются условия, необходимые для образования интерференции, -

когерентность. Приводится пример с колебаниями двух механических

вибраторов, насажанных на одну стальную пластинку, и подчеркивается, что

они совершают колебания с одинаковой частотой, в одинаковых фазах и в одной

плоскости.

Дается определение когерентности: когерентными называются волны одинаковой

частоты, с постоянной во времени разностью фаз.

Указывается, что когерентные источники образуют когерентные волны.

Остается выяснить, как создать такие волны. Обращается внимание на то, что

свет от двух электрических лампочек не интерферирует. Значит, это

независимые друг от друга источники света и световые волны, излучаемые ими,

некогерентны.

Для получения когерентных волн надо излучение от одного источника света

каким-либо способом раздвоить и затем свести в одно место. Один из способов

состоит в применении бипризмы. В ней свет, предположим, от точечного

источника S преломляется двумя призмами в разных направлениях и собирается

в одном месте на экране (рис 11.). Два преломленных пучка света являются

расходящимися и будто бы выходят из мнимых источников света S1 и S2. Они

когерентны, так как являются изображениями одного и того же источника S.

Можно воспользоваться аналогией. Пусть перед зеркалом колеблется пружинный

маятник. Очевидно, что колебания изображения в зеркале будут идти в такт с

колебаниями самого маятника. Если в каком-нибудь положении, когда шарик

двигался вниз, остановить его и заставить двигаться в противоположном

направлении, то изображение в зеркале будет двигаться тоже вверх.

Аналогичное явление имеет место в когерентных источниках света. Источник

состоит из множества излучающих атомов. Колебаниям электрона в каждом из

них соответствуют точно такие же колебания в когерентном источнике.

Объясняется, в каких местах интерференционной картины будут максимумы и

минимумы света (рис.9.). Записывается разность хода двух лучей и условия

усиления и ослабления света. При

[pic]

образуется светлая полоса. При

[pic]

темная полоса; здесь n=0, 1, 2, 3…

Если разность хода равна [pic], то волны приходят в одинаковых фазах, если

же [pic], то в противоположных фазах. Наконец следует подчеркнуть, что

областью интерференции будет всё пространство, в котором волны

накладываются друг на друга. Поэтому экран можно поставить в любое место

этой области, пересекая продольную ось всей установки.

Остается показать, как определяется длина световой волны. На одной и той же

установке, т.е. при неизменных расстояниях от экрана до источника света и

между мнимыми его изображениями, величина промежутка b между соседними

темными (или светлыми) полосами интерференции зависит лишь от цвета лучей,

т.е. от длины волны (. Значит, ( b.

Таким образом, второй важный вывод из опытов по интерференции должен

состоять в том, что это явление позволяет измерить длину световой волны.

Из-за недостатка учебного времени можно не выводить формулу для вычисления

длины волны. Важно разъяснить лишь метод измерения (. Напоминается порядок

расположения цветов в призматическом спектре и указывается, что длина волны

убывает в нем от красного участка к фиолетовому.

Пользуясь этими сведениями, можно дать понятие об однородном свете как о

свете с одной частотой колебаний и неизменной амплитудой.

Следует указать, что по длине волны или частоте можно определить цветность

светового пучка, но по цвету пучка нельзя судить о длине волны. Кроме того,

по цвету трудно отличить в спектре два его участка, длины волн которых

разнятся между собой на несколько миллимикрон. Даже самая узкая область

спектра состоит из излучения различных частот.

Затем можно поставить опыт по интерференции с бипризмой Френеля в белом

свете. Обращается внимание на характер интерференционной картины:

центральная полоса всегда белая; по обе стороны от неё – темные полосы;

затем цветные полосы максимумов света, разделенные темными промежутками;

последовательность расположения цветных полос – от фиолетового к красному,

причем первая ближе к центральной белой полосе.

Объясняется, почему центральная светлая полоса белая, а другие максимумы

цветные. В центр экрана (см.рис.11) от точек S1 и S2 колебания приходят в

одинаковой фазе. Поэтому все колебания равных частот усиливают друг друга,

а от смешения всех спектральных цветов получается белая полоса.

В точку А приходят колебания с разностью хода S2A-S1A=S2N, которая для

фиолетового света может оказаться равной четному числу полуволн, а для

других длин волн – нет. В другой точке экрана это условие может

удовлетворяться для красного света. Поэтому в А наблюдается фиолетовая

полоса, а в другом месте – красная.

Желательно рассмотреть ещё один частный случай интерференции – цвета тонких

пленок – и провести следующие самостоятельные наблюдения учащихся на уроке.

Дифракция света

Принцип Гюйгенса-Френеля рассматривается до изучения дифракции.

Предлагается познакомить учащихся с этим принципом лишь в связи с

объяснением дифракционных явлений; поэтому здесь он приобретает служебную

роль. Изучение геометрической оптики, например явлений отражения и

преломления света на основе принципа Гюйгенса программа по физике для

средней школы не предусматривает.

Вначале рекомендуется поставить опыты с водяными волнами, демонстрирующие

дифракцию на малых экранах, а затем на малых отверстиях. Опыты с плоскими

волнами ставятся в таком порядке:

. Размеры экрана велики – за экраном наблюдается резкая область

геометрической тени;

. Размеры экрана во много раз меньше – наблюдается дифракция волн.

. Размеры отверстия велики – наблюдается резкая область тени;

. Размеры отверстия малы – наблюдается загибание волн в область

геометрической тени;

Обращается внимание, что позади экрана в центре дифракционной картины

образуется светлая точка, окруженная системой темных и светлых колец и

заходящая в область геометрической тени. В случае отверстия центр

дифракционных колец может быть светлым или темным в зависимости от

расстояния до отверстия. При перемещении к нему центр экрана

последовательно становится светлым и темным.

Желательно подчеркнуть, что дифракция получается и от больших экранов, но в

этом случае она образуется далеко за ними и интенсивность света на больших

расстояниях бывает недостаточной. Остается объяснить, как образуется

явление дифракции в области геометрической тени и там, где, казалось, можно

было бы ожидать равномерную освещенность.

Этот случай легко разъяснить с качественной стороны, пользуясь принципом

Гюйгенса-Френеля.

На волновой ванне с помощью параллельных вибраторов, насажанных на одну

стальную пластинку, получается несколько систем круговых волн. В проекции

на экране видно, как образуется волновая поверхность, огибающая все

круговые волны одинаковых радиусов. Явление желательно рассмотреть при

помощи стробоскопа.

Разъясняется, что точка фронта световой волны в любой момент времени

находятся в одинаковых фазах и сами являются источниками вторичных волн.

Желая узнать, как дальше распространится фронт волны, из каждой её точки

надо провести окружности одинаковых радиусов R=ct, изображающие вторичные

волны; здесь с – скорость света; а R – расстояние, на которое он

распространяется за время t. Огибающая их поверхность и является новым

фронтом волны. Линии, перпендикулярные к этому фронту, совпадают с

направлением распространения света.

Френель показал, что вторичные волны, интерферируя, гасят друг друга и свет

обнаруживается лишь на огибающей поверхности. Поэтому фронт световой волны

движется только вперед.

На доске вычерчивается график (рис 12.), на котором с помощью принципа

Гюйгенса-Френеля поясняется причина загибания света в область

геометрической тени и появление темных мест там, где по законам

геометрической оптики должен быть свет.

Пусть плоская волна PQ падает на экран АВ (см.рис.12). Часть этой волны

задерживается экраном, другая часть будет распространяться в том же

направлении. Плоские волны изображены на рисунке сплошными штриховыми

линиями. Точки на этих линиях колеблются в противоположных фазах.

Точки А и В плоской волны являются центрами вторичных волн,

распространяющихся за малым экраном во всех направлениях. Они показаны

концентрическими окружностями. За экраном, где фазы колебаний точек

одинаковы, колебания усиливаются (например, в D, C, E), а если

противоположны, то гасят друг друга (например, в K, L, M, N).

Заключение.

Курс физики средней школы нуждается в методическом пересмотре в

соответствии с современными физическими воззрениями. Это осуществляется

двумя путями параллельно.

Во-первых, вопросы классической физики в школьном курсе излагаются с учетом

достижений новой физики, что обеспечивает более современную их трактовку и

разъяснение природы и механизмов многих физических явлений и процессов и

явлений. При этом идеи новой физики не становятся придатком к существующему

курсу, а проходят через все его изложение.

Во-вторых, школьный курс обновляется сведениями, добытыми наукой в нашем

веке.

Эти два пути совершенствования школьного курса физики взаимосвязаны и

принципиально неотделимы друг от друга.

За последние годы многие вопросы курса подверглись такому методическому

пересмотру. Однако менее других это коснулось раздела оптики в целом. Между

тем роль физической оптики в современной физике огромна. Создание

электродинамики, электронной теории, теории относительности, квантовой

механики и атомной физики непосредственно было связано с изучением

оптических явлений.

Без преувеличения можно сказать, что физическая оптика неразрывно связана с

новой физикой. От создания новой методики изучения оптики в школе во многом

зависит повышение уровня всего курса физики.

Используемая литература

1. Л.И. Резников «методика преподавания физики в средней школе», М.1963.

2. Л.И. Резников « физическая оптика в средней школе», М.1971.

3. Соколов И.И. «методика преподавания физики в средней школе»,Учпедгиз,

1959

Содержание

Введение

Методика изучения темы «отражение и преломление света

. Зеркала

2. Преломление света. Линзы.

. Преломление света.

. Линзы.

Методика изучения темы “волновые свойства света”.

. Интерференция света

. Дифракция света

-----------------------

[1] При отсутствии диафрагмы или оправы периметр самой линзы является такой

«оправой». Линза вырезает из общего светового потока лишь ту часть, которую

она затем собирает или рассеивает.

[2] А.П. Кузьмин, А.А. Покровский, Опыты по физике с проекционной

аппаратурой, М., Учпедгиз, 1962.

-----------------------

[pic]

Рис.2. Изображение предмета в плоском зеркале

11-41-область видения всего изображения предмета

11-21-область видения изображения острия стрелки

31-41-область видения изображения другого конца стрелки

Рис.5 Ход лучей в поворотной (а), оборотной (б), и обращающей (в) призмах

Рис. 4 определение показателя преломления воды по способу полного

отражения:

[pic]

в) Обращающая призма

б) Оборотная призма

а) Поворотнаяпризма

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.