![]() |
|
|
Хаос, необратимость времени и брюссельская интерпретация квантовой механикиуравнением Лиувилля, которое следует из классической гамильтоновой динамики. В операторной записи оно имеет вид [pic] при этом явный вид оператора Лиувилля L может быть выведен из гамильтониана. Следует отметить, что, как и операторы квантовой механики, оператор Лиувилля эрмитов. Теория ансамблей Гиббса обобщается на случай квантовой теории с той лишь разницей, что в квантовой теории гильбертово пространство содержит лишь половину переменных, входящих в классическое описание. Место плотности вероятности занимает матрица плотности [pic], эволюция её во времени описывается уравнением Лиувилля–фон Неймана [pic]. Так как новый оператор Лиувилля действует не на волновые функции, а на матрицу плотности, которая сама по себе оператор, L обычно называют супероператором. Оператор L – эрмитов, а пространство матриц плотности – гильбертово. [5] Использование операторного формализма позволяет в статистической механике применять к классическим системам методы, разработанные для квантовых систем: определение собственных функций и собственных значений для оператора Лиувилля. Как и в квантовой механике, мы можем рассмотреть задачу на собственные значения: [pic]При этом, поскольку L – эрмитов оператор, его собственные значения ln действительны. Кроме того, из функций | j n > можно составить полную ортонормированную систему, по которой раскладывается любая функция распределения: [pic]. Эволюция же распределения во времени определяется соотношением r (t) =U(t) r (0) =e–iLtr (0) . Как и в квантовой механике, U(t) – унитарный оператор, и поэтому [pic]. Таким образом, распределение вероятности разлагается в сумму независимо развивающихся во времени мод, каждая из которых входит с весом cn, постоянным во времени. Поскольку собственные значения вещественны, каждая мода "вращается" в фазовом пространстве. Единственное отличие от квантовой механики состоит в том, что в данном случае каждая мода вносит свой вклад непосредственно в вероятность r, а не в амплитуду вероятности y, как в квантовой механике. Проблема состоит в том, что решение уравнения Лиувилля для матрицы плотности в гильбертовом пространстве не описывает приближения к равновесию [1, с. 166]. Мы сталкиваемся здесь с основной трудностью теории необратимых процессов. Вращение по фазе сохраняет симметрию во времени. Чтобы получить нарушение симметрии во времени, было бы необходимо иметь комплексные собственные значения ln = ln' + iln'', тогда exp(–ilnt) =exp(–iln't) exp(–ln''t) , и второй множитель порождает экспоненциальное затухание. Но это невозможно, поскольку мы имеем дело с эрмитовым оператором и используем формализм гильбертова пространства. Одна из возможностей, к принятию которой склоняются многие авторы, состоит в утверждении, что поскольку уравнение Лиувилля обратимо во времени, необратимость возникает в результате грубой зернистости, то есть приближённого описания. Но на микроскопическом уровне мы снова возвращаемся к парадоксу времени. Решить его можно только двумя способами: выбрать в качестве исходных новые уравнения движения, с самого начала содержащие необратимость, или отказаться от гильбертова пространства. Концепция Пригожина реализует вторую возможность. Для интегрируемых классических систем решение задачи на собственные значения оператора L приводит к траекториям. В квантовой теории ансамблей ситуация аналогична. Если задача на собственные значения для гамильтониана H решена, то мы можем решить её и для L и представить решение в терминах волновых функций. Для квантовых систем с дискретным спектром никаких трудностей при этом не возникает, но при переходе к большим системам Пуанкаре (с непрерывным спектром и непрерывными множествами резонансов) не существует уже конструктивного метода решения задачи ни для H, ни для L [1, с. 164]. Отличие статистического описания, даваемого школой Пригожина, от классического эйнштейновско-гиббсовского именно в том, что оно несводимо. Оно неприменимо к отдельной траектории. Это утверждение представляет собой строгий математический результат, полученный в результате применения к анализу хаоса методов современного функционального анализа. Кроме того, в таком необратимом вероятностном описании прошлое и будущее играют различные роли. Хаос приводит к включению стрелы времени в фундаментальное динамическое описание. Легко показать, что хаос, определяемый как обычно, приводит к несводимому вероятностному описанию. Пригожин обращает это утверждение и выдвигает новое определение: все системы, допускающие несводимое вероятностное описание, по определению считаются хаотическими [1, с. 9]. 3. БРЮССЕЛЬСКАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ МЕХАНИКИ [pic]Э. Шрёдингер 3.1 Альтернативные интерпретации квантовой механики Вероятно, квантовая механика – одна из немногих, если не единственная работающая физическая теория, по поводу интерпретации которой на фундаментальном уровне до сих пор ведутся содержательные споры. Данная работа посвящена краткому изложению позиции и следствий только одной из интерпретаций, однако автору кажется невозможным при этом не упомянуть самые распространённые альтернативные интерпретации. (Более подробно – см. [2]) . Наиболее известны следующие подходы к квантовой механике: – копенгагенская интерпретация; – статистическая интерпретация; – "неоклассические" интерпретации со скрытыми параметрами; – многомировая интерпретация; – брюссельская интерпретация, развиваемая школой Пригожина. Остановимся вкратце на каждой из этих интерпретаций. а) Копенгагенская интерпретация является наиболее распространённой, но в то же время представляет (в силу исторических причин) собой скорее конгломерат различных подходов, нежели монолитную концепцию. Двумя важнейшими принципами являются общефилософский принцип дополнительности Бора и постулат редукции волнового пакета. Принцип дополнительности первоначально возник как истолкование соотношения неопределённостей Гейзенберга. В дальнейшем Бор развил этот принцип как общенаучный и призывал к его применению в биологии, психологии и гуманитарных науках. Содержание его примерно таково: никакая классически непротиворечивая система понятий не может описать реальность, всегда существуют различные, взаимоисключающие и взаимодополняющие подходы, каждый из которых отрицает другой. Только совместное рассмотрение этих описаний может дать нам полную картину происходящих в мире событий. Постулат редукции волнового пакета описывает процесс наблюдения квантовой системы внешним наблюдателем и утверждает, что в таком процессе происходит переход волновой функции квантового объекта в одно из собственных состояний – то есть система переходит из смешанного состояния в чистое, и переход этот необратим. Собственно, в копенгагенской интерпретации этот постулат и является тем "примечанием", вносящем необратимость времени (см. раздел 2.1) в теорию. С постулатом редукции волнового пакета связано много дискуссий и парадоксов. Копенгагенская интерпретация квантовой механики неоднократно подвергалась критике за необходимость присутствия в ней наряду с квантовыми объектами сугубо классического внешнего наблюдателя. б) Статистическая интерпретация, или интерпретация статистических ансамблей, основана на предположении, что волновая функция квантовой системы описывает не индивидуальный объект, а ансамбль одинаковым образом приготовленных объектов. При этом признаётся фундаментальный характер вероятностных предсказаний в квантовой механике, и в этом смысле квантово- механическое описание реальности считается полным. Вероятности того или иного результата естественным образом даётся относительно-частотное толкование. С точки зрения статистической интерпретации квантовая механика вообще не описывает индивидуальные квантовые объекты. Нужно заметить, что в рамках статистической интерпретации вводится постулат о том, что в процессе измерения макроприбор выделяет из статистического ансамбля некоторый подансамбль, соответствующий данному результату измерения. Этот постулат фактически занимает место постулата редукции в копенгагенской интерпретации. в) Неоклассические интерпретации квантовой механики исходят из того, что квантово-механическое описание в действительности не является полным. Следовательно, должна существовать более общая теория, обеспечивающая наличие детерминизма классического образца. По отношению к такой теории квантовая механика была бы некоторым статистическим приближением. Наиболее распространены неоклассические теории со скрытыми параметрами. В них предполагается, что волновая функция Ѕ y > не полностью определяет состояние системы. Наряду с ней существуют скрытые параметры x, такие, что их точное знание могло бы дать возможность предсказания результатов измерения любой физической величины. При этом сами параметры являются статистически распределёнными по некоторому закону, и мы не можем на практике точно определить значение x. Поэтому сохраняются все следствия квантовой механики, в том числе невозможность одновременного точного измерения некоммутирующих величин. Принципиальным в такой неоклассической интерпретации является факт, что существует описание состояния системы (Ѕ y >, x) , позволяющее избежать недетерминированности в предсказании результатов измерений. Вопрос об обратимости времени в интерпретации со скрытыми параметрами не является ключевым, и остаётся столь же открытым, сколь и в копенгагенской интерпретации (особенно если из последней "удалось бы изъять" принцип редукции волновой функции) . г) Многомировая интерпретация квантовой механики (концепция Эверетта) исходит из принципа реальности волновой функции. При этом постулируется, что существует такая функция сразу для всей Вселенной, и нет необходимости в мистическом "внешнем наблюдателе", отвечающем, например, за квантовые эффекты в момент её рождения. В многомировой интерпретации место постулата редукции волнового пакета занимает понятие "ветвления волновой функции Вселенной", которое можно толковать либо образно – как появление "параллельных квантовых миров", либо чисто математически, как процедуру дефакторизации волновой функции наблюдаемого объекта [2, с. 29]. При этом возникают свои математические тонкости, связанные с предпочтительным выбором базиса собственных состояний для каждого объекта во Вселенной, исключающего "лишние" ветвления для не наблюдающихся в конкретном эксперименте объектов (своеобразное применение хорошо известной "бритвы Оккама") . Наконец, брюссельская интерпретация ограничивает применимость чистых состояний (то есть точек в фазовом пространстве классической механики и волновых функций в квантовой механике) введением некоего нового принципа, который можно назвать "микроскопическим вторым началом термодинамики". При этом отвергается представление как о реальности волновой функции в старом смысле этого слова, так и о "классическом идеале" – в пользу новой концепции, в основе которой лежит необратимость времени. 3.2 Неунитарная эволюция и несводимое описание Необратимость, выражаемая стрелой времени – свойство статистическое. Она не может быть введена на уровне отдельных траекторий (или волновых функций) и поэтому требует радиального отхода от ньютоновской механики или ортодоксальной квантовой механики, в основе которых лежат понятия траектории или отдельной волновой функции. Ещё Больцман понял, что необходим подход на основе ансамблей. Школа Пригожина реализует эту программу с необходимой математической строгостью. Неустойчивость и хаос вынуждают отказаться от описания классической механики в терминах траекторий и перейти к описанию в терминах распределения вероятности. Примером может служить рассмотренное ранее отображение сдвига Бернулли. В разделе 1.1 был приведён явный вид оператора с дискретным временем, описывающего эволюцию плотности вероятности для сдвига Бернулли (применительно к отображениям подобный оператор называется оператором Перрона–Фробениуса) . В статистической механике оператор эволюции имеет вид U(t) = e–iLt, а в квантовой механике U(t) = e–iHt. Два последних оператора унитарны, то есть сохраняют скалярное произведение, и в гильбертовом пространстве имеют собственные значения, по модулю равные 1 – то есть приводят к периодическим функциям от времени типа exp(–iEnt) . В отличие от них оператор эволюции хаотических систем должен описывать приближение к равновесию и, следовательно, содержать время релаксации. Для этого требуются комплексные спектральные представления. Оказалось, что для сдвига Бернулли в гильбертовом пространстве спектрального разложения отображения не существует. Собственные функции этого оператора не удовлетворяют условию квадратичной интегрируемости, поэтому вместо гильбертова пространства требуется перейти к так называемому обобщённому пространству, включающему наряду с квадратично интегрируемыми функциями, например, ещё и d -функции типа дираковской. Собственные значения для построенных в этом пространстве собственных функций оказываются напрямую связанными с временем Ляпунова в хаотической системе. На языке распределений вероятности отдельная траектория для сдвига Бернулли представляется функцией r n=d (x–xn) , сдвиг Бернулли преобразует её в r n+1=d (x–xn+1) = d (x–2xn) при xn = ) . Нетрудно показать, что он имеет вид: [pic]Можно также показать, что оператор U+ – изометрический, то есть сохраняет скалярное произведение (однако в отличие от унитарного изометрический оператор не допускает обратного, из чего следует, что сдвиг Бернулли – не обратимое отображение) . Задача на собственные значения U+f(x) =l f(x) не имеет других решений в классе непрерывных функций, кроме постоянной. Таким образом, сдвиг Бернулли не имеет спектрального представления в гильбертовом пространстве. Однако U+ имеет собственные функции и собственные значения в обобщённых пространствах. Например: U+[d (x–1) –d (x) ]=1/2 [d (x–1) –d (x) ], следовательно, мы имеем собственную функцию оператора U+, которая принадлежит к классу обобщённых функций и имеет такое же собственное значение, какое первый многочлен Бернулли имеет для оператора U. Обозначим поэтому найденную функцию B(1) (x) . Существует целое семейство обобщенных функций B(n) (x) , которые являются собственными функциями оператора U+ и соответствуют собственным значениям 1/2n. Эти функции не имеют конечной нормы, что вынуждает к переходу в обобщённое пространство. Их семейство, однако, обладает свойствами ортогональности и полноты. Таким образом, как и в квантовой механике, мы можем разложить вероятность r (x) по биортонормированному семейству функций: [pic]. Распространяя скалярное произведение на обобщённые функции, необходимо сделать некоторые существенные замечания. Основное свойство d -функции состоит в том, что при интегрировании с обычной непрерывной функции она "вырезает" её значение в точке x=x0. Для корректности скалярного произведения , где f – обобщённая функция, необходимо, чтобы g была подходящей функцией, обеспечивающей сходимость скалярного произведения. Она, очевидно, не должна принимать бесконечных значений – во всяком случае, в точке x=x0. Назовём такие функции пробными. Мы можем определить действие оператора A на обобщённую функцию f с помощью соотношения = – но такое соотношение вполне определено только при том условии, что A+g остаётся пробной функцией. Задача на собственные значения A|f> = l |f> также имеет смысл только в том случае, если пользоваться пробными функциями g такими, что = l . Возвращаясь к спектральному представлению эволюции при сдвиге Бернулли, делаем вывод: так как B(n) – обобщённые функции, r (x) должна быть пробной функцией, так как в противном случае ей бы соответствовала d -функция, для которой скалярное произведение с B(n) расходится. Спектральные теории Пригожина применимы только для ансамблей траекторий – это фундаментальный результат. Для хаотических систем, а сдвиг Бернулли – простейший из примеров таких систем, вероятностное описание следует строить не в гильбертовом, а в обобщённом пространстве, и оно несводимо. В этом – принципиальное отличие брюссельского подхода от подхода на основе теории ансамблей Гиббса–Эйнштейна: их описание было сводимо, поскольку могло быть разложено на описания отдельных траекторий. Мы подходим к важному вопросу: что означает действие оператора эволюции U(t) на обобщённую функцию? Это соотношение имеет вполне определённый смысл, если U+(t) g остаётся пробной функцией. Для хаотических систем это условие, как правило, не выполняется и при t>0, и при t<0. Пробные функции для прошлого отличаются от пробных функций для будущего. Этот факт приводит к нарушению симметрии во времени и лежит в основе решения парадокса времени, предлагаемого брюссельской школой. Рассмотренное выше отображение пекаря также допускает спектральное представление в гильбертовом пространстве, однако собственные значения его оператора Перрона–Фробениуса не имеют при этом отношения к времени Ляпунова – таким образом, хаотические свойства остаются "за кадром". Оказывается всё- таки, что некоторые хаотические системы – и преобразование пекаря в частности – допускают дополнительные спектральные представления. Помимо спектрального представления оператора эволюции в гильбертовом пространстве можно построить новое представление в обобщённом гильбертовом пространстве, которое связывает эволюцию во времени с временем Ляпунова. Может возникнуть вопрос – так какое же представление правильное? С математической точки зрения они оба вполне корректны. Однако комплексные представления в обобщённом пространстве позволяют продвинуться значительно дальше, так как включают в спектр оператора эволюции время Ляпунова, которое характеризует временной горизонт хаотических систем. Новые представления позволяют описывать приближение к равновесию, явно описывают нарушение симметрии во времени и включают необратимость на фундаментальном уровне описания. Весьма важно, что новые представления несводимы. Неоднократно утверждалось, что хаос, связанный с чувствительностью к начальным условиям, приводит к "невычислимым" траекториям. Казалось, что это чисто техническая трудность. Как теперь понятно, причина гораздо более глубокая. Существует своего рода соотношение дополнительности в боровском смысле между необратимостью на уровне статистических ансамблей, с одной стороны, и траекторий – с другой. На простейших хаотических примерах мы проиллюстрировали, как в концепции Пригожина возникает необходимость несводимого описания и как в этом несводимом описании проявляется стрела времени. Обратимся теперь к выводам, которые аналогичный подход даёт в квантовой теории (объём настоящей работы не позволяет подробно описать математические особенности применения этого подхода) . Приведём только один пример. В операторе эволюции U(t) =e–iHt будущее и прошлое играют одну и ту же роль, так как независимо от того, какие знаки имеют t1 и t2 выполняется свойство U(t1+t2) = U(t1) + U(t2) . Принято говорить, что оператор эволюции U(t) образует динамическую группу. Пробные функции же принадлежат двум различным классам в зависимости от того, какую эволюцию – прямую (в будущее) или обратную (в прошлое) – мы рассматриваем. Это означает, что динамическая группа, порождаемая оператором эволюции U(t) , распадается на две полугруппы – одну для оператора U(+t) , другую – для U(–t) . Введение стрелы времени позволяет сделать шаг вперёд в рассмотрении уже упоминавшихся больших систем Пуанкаре – например, в задаче рассеяния. Возникающие в теории возмущений малые знаменатели вида [pic]регуляризуются введением малой мнимой добавки: [pic]при e ® 0 . Это устраняет расходимость – но такая добавка есть не что иное, как введение хронологического упорядочения на микроскопическом уровне! В результате симметричное во времени уравнение Шрёдингера порождает два класса решений, одно из которых соответствует прямому. а другое – обратному рассеянию. Решение уравнений обладает меньшей симметрией, чем уравнения движения. Аналогичный подход в квантовой статистической теории – решение задачи на собственные значения супероператора Лиувилля – также приводит к необходимости мнимой добавки в знаменатель, и собственные функции супероператора Лиувилля перестают быть произведениями волновых функций. Получающиеся уравнения Лиувилля–фон Неймана не могут быть выведены из уравнения Шрёдингера. В этом смысле концепция Пригожина приводит к альтернативной квантовой теории. ЗАКЛЮЧЕНИЕ В концепции И. Пригожина необратимость процессов во времени вводится на микроскопическом уровне. В квантовой теории это достигается рассмотрением пространства обобщённых функций вместо обычного гильбертова пространства, при этом оператор эволюции системы перестаёт быть унитарным, а его собственные значения становятся комплексными. Мнимая часть этих собственных значений после подстановки в уравнение Шрёдингера отвечает за затухание, что соответствует необратимости времени. Другая важная черта квантовой теории в концепции Пригожина – принципиальная несводимость получаемых решений к волновым функциям отдельных частиц. Статистическое описание с использованием матрицы плотности становится необходимым с самого начала, мы больше не можем рассуждать иначе, как в терминах ансамблей. В отличие от копенгагенской интерпретации квантовой механики, не требуется постулата о редукции волнового пакета и существования внешнего наблюдателя с классическим прибором. В этом есть некоторое сходство с многомировой интерпретацией Эверетта, так как можно вводить понятие волновой функции Вселенной. Однако, математический аппарат теории Пригожина не требует введения процесса дефакторизации волновой функции и сложных процедур выбора базиса, связанного с объектом. Введение вероятностей в концепции Пригожина вполне совместимо с физическим реализмом, и его не требуется объяснять неполнотой нашего знания. Наблюдатель более не играет активной роли в эволюции природы – по крайней мере, играет роль не большую, чем в классической физике. Эта роль крайне далека от роли демиурга, которой копенгагенская интерпретация квантовой физики наделяет наблюдателей, считая их ответственными за переход от потенциальной возможности природы к актуальности. Самым же, вероятно, важным, является то, что одна и та же математическая структура, включающая в себя хаос, позволяет решить и парадокс времени, и квантовый парадокс – две проблемы, которые омрачали горизонты физики на протяжении многих-многих лет. ЛИТЕРАТУРА 1. Пригожин И., Стенгерс И. Время, хаос, квант – М.: Прогресс, 1994 2. Барвинский А. О., Каменщик А. Ю., Пономарёв В. Н. Фундаментальные проблемы интерпретации квантовой механики. Современный подход – М.: Изд-во МГПИ, 1988 3. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 1, Механика – М.: Наука, 1988 4. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 3, Квантовая механика. Нерелятивистская теория – М.: Наука, 1990 5. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 5, Статистическая физика. Часть 1 – М.: Наука, 1988 6. Эйнштейн А. Собрание сочинений в четырёх томах, т. 3 – ст. Испускание и поглощение излучения по квантовой теории – М.: Наука, 1966 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |