![]() |
|
|
Термодинамикаобласти величина dP / dt не имеет какого либо общего свойства , однако , величина dx P/dt удовлетворяет неравенству общего характера (2.6. ) , которая является обобщением теоремы о минимальном производстве энтропии . 2.3 ПРИМЕРЫ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ. Рассмотрим в качестве иллюстрации некоторые примеры самоорганизации систем в физике , химии , биологии и социуме. 1. ФИЗИЧЕСКИЕ СИСТЕМЫ. В принципе даже в термодинамическом равновесии можно указать примеры самоорганизации , как результаты коллективного поведения . Это , например , все фазовые переходы в физических системах , такие как переход жидкость - газ , ферромагнитный переход или возникновение сверхпроводимости . В неравновесном состоянии можно назвать примеры высокой организации в гидродинамике , в лазерах различных типов , в физике твердого тела - осциллятор Ганна , туннельные диоды , рост кристаллов . В открытых системах , меняя поток вещества и энергии из вне , можно контролировать процессы и направлять эволюцию систем к состояниям , все более далеким от равновесия . В ходе неравновесных процессов при некотором критическом значении внешнего потока из неупорядоченных и хаотических состояний за счет потери их устойчивости могут возникать упорядоченные состояния , создаваться диссипативные структуры . 2.3.1а. ЯЧЕЙКИ БЕНАРА. Классическим примером возникновения структуры из полностью хаотической фазы являются конвективные ячейки Бенара . В 1900 году была опубликована статья Х.Бенара с фотографией структуры , по виду напоминавшей пчелиные соты (рис. 2.7). [pic] Рис. 2.7. Ячейки Бенара : а) - общий вид структуры б) - отдельная ячейка. Эта структура образовалась в ртути , налитой в плоский широкий сосуд , подогреваемый снизу , после того как температурный градиент превысил некоторое критическое значение . Весь слой ртути (или другой вязкой жидкости) распадался на одинаковые вертикальные шестигранные призмы с определенным соотношением между стороной и высотой (ячейки Бенара). В центральной области призмы жидкость поднимается , а вблизи вертикальных граней - опускается . Возникает разность температур Т между нижней и верхней поверхностью (Т = Т2 - Т1 ( 0 .Для малых до критических разностей (Т ( (Тkp жидкость остается в покое , тепло снизу вверх передается путем теплопроводности . При достижении температуры подогрева критического значения Т2 = Тkp (соответственно (Т = (Тkp ) начинается конвекция . При достижении критического значения параметра Т , рождается , таким образом , пространственная диссипативная структура . При равновесии температуры равны Т2 =Т1 , (Т = 0 . При кратковременном подогреве (подводе тепла) нижней плоскости , то есть при кратковременном внешнем возмущении температура быстро станет однородной и равной ее первоначальному значению . Возмущение затухает , а состояние - асимптотически устойчиво. При длительном , но до критическом подогреве ( (Т ( (Тkp ) в системе снова установится простое и единственное состояние , в котором происходит перенос к верхней поверхности и передачи его во внешнюю среду (теплопроводность) , рис. 2.8 , участок а . Отличие этого состояния от равновесного состояния состоит в том , что температура , плотность , давление станут неоднородными . Они будут приблизительно линейно изменяться от теплой области к холодной . [pic] Рис. 2.8. Поток тепла в тонком слое жидкости. Увеличение разности температур (Т , то есть дальнейшее отклонение системы от равновесия , приводит к тому , что состояние неподвижной теплопроводящей жидкости становится неустойчивым участок б на рисунке 2.8. Это состояние сменяется устойчивым состоянием (участок в на рис. 2.8) , характеризующимся образованием ячеек . При больших разностях температур покоящаяся жидкость не обеспечивает большой перенос тепла , жидкость (вынуждена( двигаться , причем кооперативным коллективным согласованном образом. Далее этот вопрос рассматривается в 3 главе. 2.3.1в. ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА. Итак , в качестве примера физической системы , упорядоченность которой есть следствие внешнего воздействия , рассмотрим лазер. При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла. [pic] При малой мощности накачки эти электромагнитные волны , которые испускает лазер , некоррелированные , и излучение подобно излучению обычной лампы. Такое некогерентное излучение - это шум , хаос. При повышении внешнего воздействия в виде накачки до порогового критического значения некогерентный шум преобразуется в (чистый тон( , то есть испускает число синусоидальная волна - отдельные атомы ведут себя строго коррелированным образом , самоорганизуются. Лампа ( Лазер Хаос ( Порядок Шум ( Когерентное излучение В сверхкритической области режим (обычной лампы( оказывается не стабильным , а лазерный режим стабильным , рисунок 2.9. [pic] Рис. 2.9. Излучение лазера в до критической (а) и сверхкритической (б) области. Видно , что образование структуры в жидкости и в лазере формально описывается весьма сходным образом . Аналогия связана с наличием тех же самых типов бифуркаций в соответствующих динамических уровнях. Подробнее этот вопрос рассмотрим в практической части , в 3 главе. 2. ХИМИЧЕСКИЕ СИСТЕМЫ . В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского . 2.3.2а. РЕАКЦИЯ БЕЛАУСОВА - ЖАБОТИНСКОГО. Рассмотрим реакцию Белоусова -Жаботинского . В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 , CH2(COOH)2, H2SO4 , добавляют несколько капель индикатора окисления - восстановления - ферроина и перемешивают . Более конкретно - исследуются окислительно - восстановительные реакции Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+ в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления . При составе сульфат церия - 0,12 ммоль/л бромида калия - 0,60 ммоль/л малоковой кислоты - 48 ммоль/л 3-нормальная серная кислота , немного ферроина При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а . [pic] Рис. 2.10. Временные (а) и пространственные (б) периодические структуры в реакции Белоусова - Жаботинского. ...Такая система и эффект получили название химические часы . Если на реакцию Белоусова - Жаботинского накладывать возмущение - концентрационный или температурный импульс , то есть вводя несколько миллимолей бромата калия или прикасаясь к колбе в течении нескольких секунд , то после некоторого переходного режима будут снова совершаться колебания с такой же амплитудой и периодом , что и до возмущения . Диссипативная Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами . При составе сульфата церия - 4,0 ммоль/л, бромида калия - 0,35 ммоль/л, малоковой кислоты - 1,20 моль/л, серной кислоты - 1,50 моль/л, немного ферроина при 20 С в системе происходят периодические изменения цвета с периодом около 4 минут . После нескольких таких колебаний спонтанно возникают неоднородности концентрации и образуются на некоторое время ( 30 минут ) , если не подводить новые вещества , устойчивые пространственные структуры , рисунок 2.10б . Если непрерывно подводить реагенты и отводить конечные продукты , то структура сохраняется неограниченно долго . 3. БИОЛОГИЧЕСКИЕ СИСТЕМЫ . Животный мир демонстрирует множество высокоупорядоченных структур и великолепно функционирующих . Организм как целое непрерывно получает потоки энергии ( солнечная энергия , например , у растений ) и веществ ( питательных ) и выделяет в окружающую среду отходы жизнедеятельности . Живой организм - это система открытая . Живые системы при этом функционируют определенно в дали от равновесия . В биологических системах , процессы самоорганизации позволяют биологическим системам (трансформировать( энергию с молекулярного уровня на макроскопический . Такие процессы , например , проявляются в мышечном сокращении , приводящим к всевозможным движениям , в образовании заряда у электрических рыб , в распознавании образов , речи и в других процессах в живых системах. Сложнейшие биологические системы являются одним из главных объектов исследования в синергетике . Возможность полного объяснения особенностей биологических систем , например , их эволюции с помощью понятий открытых термодинамических систем и синергетики в настоящее время окончательно неясна . Однако можно указать несколько примеров явной связи между понятийным и математическим аппаратом открытых систем и биологической упорядоченностью. Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида и систему (жертва - хищник( . 4. СОЦИАЛЬНЫЕ СИСТЕМЫ . Социальная система представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе. Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих. Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость : состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности N , новых экономических функций S - функция в локальной области i города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде dni . = Кni(N + ( Rk Sik - ni) - dni ( 2.13 ) dt k где Rk вес данной к - ой функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й продукт в i - й области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем. ПОСТАНОВКА ЗАДАЧИ. В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные . Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем . ГЛАВА 3 АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ. 3.1. ЯЧЕЙКИ БЕНАРА . Для того , чтобы экспериментально изучить структуры , достаточно иметь сковороду , немного масла и какой ни будь мелкий порошок , чтобы было заметно движение жидкости . Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1) [pic] Рис. 3.1. Конвективные ячейки Бенара. Если дно сковороды плоское и нагреваем мы ее равномерно , то можно считать , что у дна и на поверхности поддерживаются постоянные температуры , снизу - Т1 , сверху - Т2 . Пока разность температуры (Т = Т1 - Т2 невелика , частички порошка неподвижны , а следовательно , неподвижна и жидкость . Будем плавно увеличивать температуру Т1 . С ростом разности температур до значения (Тc наблюдается все та же картина , но когда (Т ( (Тc , вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх , по кроям вниз . Если взять другую сковороду , то можно убедиться , что величина возникающих ячеек практически не зависит от ее формы и размеров . Этот замечательный опыт впервые был проделан Бенаром в начале нашего века , а сами ячейки получили название ячеек Бенара . Элементарное качественное объяснения причины движения жидкости заключается в следующем . Из-за теплового расширения жидкость расслаивается , и в более нижнем слое плотность жидкости (1 меньше , чем в верхнем (2 . Возникает инверсный градиент плотности , направленный противоположно силе тяжести . Если выделить элементарный объем V , который немного смещается вверх в следствии возмущения , то в соседнем слое архимедова сила станет больше силы тяжести , так как (2 ( (1 . В верхней части малый объем , смещаясь вниз , поподает в облость пониженной плотности , и архимедова сила будет меньше силы тяжести FA < FT , возникает нисходящее движение жидкости . Направление движения нисходящего и восходящего потоков в данной ячейке случайно , движение же потоков в соседних ячейках , после выбора направлений в данной ячейке детерминировано . Полный поток энтропии через границы системы отрицателен , то есть система отдает энтропию , причем в стационарном состоянии отдает столько , сколько энтропии производится внутри системы (за счет потерь на трение). dSe q q T1 - T2 . = ( - ( = q ( ((( < 0 (3.1) dt T2 T1 T1 ( T2 Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры . При этом в центральной части ячейки жидкость движется вверх , а на ее периферии - вниз. Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим. [pic] Рис. 3.2. Иллюстрация возникновения тепловой конвекции в жидкости . К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости . 2 ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА. Во второй главе этот вопрос мы уже рассматривали . Здесь же , рассмотрим простую модель лазера . Лазер - это устройство , в котором в процессе стимулированного излучения порождаются фотоны . Изменение со временем числа фотонов n , или другими словами , скорость порождения фотонов , определяется уравнением вида : dn / dt = «Прирост» - «Потери» (3.2) Прирост обусловлен так называемым стимулированном излучением . Он пропорционален числу уже имеющихся фотонов и числу возбужденных атомов N . Таким образом : Прирост = G N n (3.3) Здесь G - коэффициент усиления , который может быть получен из микроскопической теории . Член , описывающий потери , обусловлен уходом фотонов через торцы лазера . Единственное допущение , которое мы принимаем , - это то , что скорость ухода пропорциональна числу имеющихся фотонов . Следовательно , Потери = 2(n (3.4) 2( = 1/ t0 , где t0 - время жизни фотона в лазере . Теперь следует учесть одно важное обстоятельство , которое делает (2.1) нелинейным уравнением вида : [pic] (3.5) Число возбужденных атомов уменьшается за счет испускания фотонов . Это уменьшение (N пропорционально числу имеющихся в лазере фотонов , поскольку эти фотоны постоянно заставляют атомы возвращаться в основное состояние . (N = (n (3.6) Таким образом , число возбужденных атомов равно N = N0 - (N (3.7) где N0 - число возбужденных атомов , поддерживаемое внешней накачкой , в отсутствии лазерной генерации. Подставляя (3.3) - (3.7) в (3.2) , получаем основное уравнение нашей упрощенной лазерной модели : [pic] (3.8) где постоянная k дает выражение : k1 = (G k = 2( - GN0 (( 0 (3.9) Если число возбужденных атомов N0 (создаваемых накачкой) невелико , то k положительно , в то время как при достаточно больших N0 k - может стать отрицательным . Изменение знака происходит когда GN0 = 2( (3.10) Это условие есть условие порога лазерной генерации . Из теории бифуркации следует , что при k > 0 лазерной генерации нет , в то время как при k < 0 лазер испускает фотоны. Ниже или выше порога лазер работает в совершено разных режимах . Решим уравнение (3.8) и проанализируем его аналитически : - это уравнение одномодового лазера . Запишем уравнение (3.8) в следующем виде : [pic] Разделим исходное уравнение на n2 . [pic] и введем новую функцию Z : 1/n = n-1 = Z ( Z1 = - n-2 следовательно уравнение примет вид : [pic] перепишем его в следующем виде : [pic] разделим обе части данного уравнения на -1 , получим [pic] (3.11) Уравнение (3.11) - это уравнение Бернулли , поэтому сделаем следующую замену Z = U(V , где U и V неизвестные пока функции n , тогда Z1 = U1 V + U V1 . Уравнение (3.11) , после замены переменных , принимает вид U1 V + UV1 - k UV = k1 преобразуем , получим U1 V + U(V1 - k V) = k1 (3.12) Решим уравнение (3.12) V1 - k V = 0 ( dV/dt = k V сделаем разделение переменных dV/V =k dt ( ln V = k t результат V = ekt (3.13) Отсюда мы можем уравнение (3.12) переписать в виде : U1 ekt = k1 - это то же самое , что dU/dt = k1e-kt , dU = k1e -kt dt выразим отсюда U , получим [pic] (3.14) По уравнению Бернулли мы делали замену Z = U V подставляя уравнения (3.13) и (3.14) в эту замену , получим [pic] Ранее вводили функцию Z = n-1 , следовательно [pic] (3.15) Начальное условие n0=1/(c-k1/k) , из этого условия мы можем определить константу с следующим образом [pic] Подставляя , найденную нами константу в уравнение (3.15) , получим [pic] (3.16) Исследуем функцию (3.16) при k = 0 , k < 0 , k > 0 . При k(0 ; ekt ( 0 ; (ekt - 1)(0 , то есть (ekt - 1)(k1/k(0(( (неопределенность) , раскроем эту неопределенность по правилу Лопиталя . Эту неопределенность вида 0(( следует привести к виду [pic] . При этом , как и всегда при применении правила Лопиталя , по ходу вычислений рекомендуется упрощать получившиеся выражения , следующим образом : [pic] n(k)при k(0 ( 0 , следовательно [pic] Перепишем (3.16) в следующем виде [pic] Линеаризуем нелинейное уравнение , получим [pic] [pic]ln n = - kt + c ( [pic] Построим график для этих условий [pic] Рис. 3.3 К самоорганизации в одномодовом лазере : кривая 1 : k < 0 , режим лазерной генерации кривая 2 : k = 0 , точка бифуркации , порог кривая 3 : k > 0 , режим лампы. При k = 0 уравнение (3.8) примет вид [pic] решая его , получим [pic] [pic] (3.8) При условии [pic] ; n(t) = const , функция (3.8) приближается к стационарному состоянию , не зависимо от начального значения n0 , но в зависимости от знаков k и k1 (смотри рисунок 3.3). Таким образом , функция (3.8) принимает стационарное решение [pic] 3.3. ДИНАМИКА ПОПУЛЯЦИИ . О распространении и численности видов была собрана обширная информация . Макроскопической характеристикой , описывающей популяцию , может быть число особей в популяции . Это число играет роль параметра порядка . Если различные виды поддерживаются общим пищевым ресурсом , то начинается межвидовая борьба , и тогда применим принцип Дарвина : выживает наиболее приспособленный вид . ( Нельзя не отметить сильнейшую аналогию , существующую между конкуренцией лазерных мод и межвидовой борьбой ). Если имеются однотипные пищевые ресурсы , то становится возможным сосуществование видов . Численность видов может быть подвержена временным колебаниям. ОДИН ВИД. Рассмотрим сначала одну популяцию с числом особей в ней n . При наличии пищевых ресурсов А особи размножаются со скоростью : [pic] и гибнут со скоростью : [pic] Здесь k и d - некоторые коэффициенты рождаемости и смертности , в общем случае зависящее от параметров внешней среды обитания . Если бы количество пищи было неограниченно , то эволюционное уравнение выглядело бы так : [pic] Введем обозначение ( = kA - d Оно было бы линейным и описывало бы неограниченный экспериментальный рост (при kA > d), либо экспериментальную гибель (при kA < d) популяции. [pic] Рис. 3.4 Кривая 1: Экспоненциальный рост ; (>0 , kA>d Кривая 2: Экспоненциальная гибель ; (>0 , kA>d. [pic] В общем случае , однако , пищевые ресурсы ограничены , так что скорость потребления пищи [pic] Вместе с тем в общем случае возможно восстановление пищевых ресурсов со скоростью : [pic] Здесь , конечно , рассмотрен придельный случай сохранения полного количества органического вещества A + n = N = const , N - способность среды обитания поддерживать популяцию. Тогда с учетом A = N - n получится следующее уравнение эволюции популяции одного вида (логистическое уравнение Ферхюльста ) : [pic] (3.17) Решим уравнение (3.17) аналитически , перепишем его следующим образом [pic] , обозначим kN - d = k1 Получим : [pic] Воспользуемся [pic]табличным интегралом , [pic] ,полученное уравнение примет вид : [pic][pic] решим это уравнение , преобразуя [pic] [pic] сократим полученное выражение на k , и перенесем переменную k1 в правую часть , получим [pic] отсюда n(t) ( [pic] [pic] Начальные условия : [pic] откуда [pic] Подставляя с в решение , получим уравнение в следующем виде [pic] ранее мы обозначали , что [pic] , подставляем и преобразуем [pic] сократим на k - коэффициент рождаемости , окончательно получим решение уравнения (3.17) [pic] Итак , получено аналитическое решение логистического уравнения - это решение указывает на то , что рост популяции останавливается на некотором конечном стационарном уровне: [pic] то есть параметр n1 указывает высоту плато насыщения , к которому стремится n(t) с течением времени . Параметр n0 указывает начальное значение численности одного вида популяции : n0 = n(t0) . Действительно , [pic] ,то есть n1 - предельная численность вида в данной среде обитания . Иначе говоря , параметр n1 характеризует емкость среды по отношению к данной популяции . И наконец , параметр (kN - d) задает крутизну начального роста . Отметим , что при малой исходной численности n0 (начальное число особи) начальный рост популяций будет почти экспоненциальным [pic] Рис. 3.5. Логистическая кривая. (эволюция популяции одного вида) Решение уравнения (3.17) можно представить с помощью логистической кривой (рис. 3.5) . Эволюция полностью детерминирована . Популяция перестает расти , когда ресурс среды оказывается исчерпанным . Самоорганизация - при ограниченном пищевом ресурсе. Система самоорганизованна и взрывоподобный рост популяции (рис. 3.4 Кривая 1) сменяется кривой с насыщением . Подчеркнем , что при описании данной биологической системы используют понятийный и физико-математический аппарат из нелинейной неравновесной термодинамики. Может случится , однако, что всегда за событиями , не управляемыми в рамках модели , в той же среде появится , первоначально в малых количествах , новые виды (характеризуемые другими экологическими параметрами k,N и d) . В связи с такой экологической флуктуацией возникает вопрос о структурной устойчивости : новые виды могут либо исчезнуть , либо вытеснить первоначальных обитателей . Пользуясь линейным анализом устойчивости , не трудно показать , что новые виды вытесняют старые только в том случае , если [pic] Последовательность , в которой виды заполняют экологическую нишу , представлена на рисунке 3.6. [pic] Рис. 3.6. Последовательное заполнение экологической ниши различными видами . Эта модель позволяет придать точным количественный смысл утверждению о том , что «выживает наиболее приспособленный» , в рамках задачи о заполнении заданной экологической ниши . 2. СИСТЕМА «ЖЕРТВА - ХИЩНИК». Рассмотрим систему, состоящую из двух видов - это «жертва» и «хищник» (например , зайцы и лисицы) , то эволюция системы и ее самоорганизация выглядят иначе , чем в предыдущем случае. Пусть в биологической системе имеются две популяции - «жертв» - кролики (К) , и «хищников» - лисиц (Л), численностью К и Л . Проведем теперь рассуждение , которое позволит нам объяснить существование диссипативных структур . Кролики (К) поедают траву (Т) . Предположим , что запас травы постоянен и неисчерпаем . Тогда , одновременное наличие травы и кроликов способствуют неограниченному росту кроличьей популяции . Этот процесс можно символически изобразить так : Кролики + Трава ( Больше кроликов К + Т ( 2К Тот факт , что в стране кроликов всегда имеется в достатке травы , вполне аналогичен непрерывному подводу тепловой энергии в задаче с ячейками Бенара . Вскоре процесс , в целом , будет выглядеть как диссипативный (во многом аналогично процессу Бенара ). Реакция « Кролики - Трава » происходит спонтанно в направлении увеличения популяции кроликов, что является прямым следствием второго начала термодинамики . Но вот в нашу картину , где мирно резвятся кролики , прокрались хищные лисицы (Л), для которых кролики являются добычей . Подобно тому , как по мере поедания травы кроликов становится больше , за счет поедания кроликов возрастает число лисиц : Лисицы + Кролики ( Больше лисиц Л + К ( 2Л В свою очередь лисицы , как и кролики являются жертвами - на этот раз человека , точнее говоря происходит процесс Лисицы ( Меха Конечный продукт - Меха , не играет непосредственной роли в дальнейшем ходе процесса . Этот конечный продукт можно , однако , рассматривать как носитель энергии, выводимой из системы , к которой она была в начале подведена (например, в виде травы ). Таким образом , в экологической системе также существует поток энергии - аналогично тому , как это имеет место в химической пробирке или биологической клетке . Совершенно ясно , что в действительности происходят периодические колебания численности популяции кроликов и лисиц , причем за нарастании численности кроликов следует нарастание численности лисиц , которые сменяются уменьшением численности кроликов , сопровождающимся столь же резким снижением численности лисиц , затем повышенным подъемом численности кроликов и так далее (рис. 3.7). [pic] Рис. 3.7. Изменение численности популяций кроликов и лисиц со временем. Наличие периодичности означает возникновение экологической структуры. С течением времени численность обеих популяций меняется в соответствии с последовательным прохождением точек графика . Через некоторое время (конкретное значение зависит от быстроты поедания лисицами кроликов , а так же от скорости размножения обоих видов) весь цикл начинается вновь. Поведение популяций при различных степенях плодовитости , а так же различных способностях избегать истребления можно изучить количественно с помощью программы : ПОПУЛЯЦИЯ (в приложении). Эта программа реализует решение уравнений для диссипативной структуры «кролики - лисицы». Результат решения изображается графически . Решается система дифференциальных уравнений [pic] Здесь буквы К, Л, Т - означают соответственно количество кроликов , лисиц , травы ; коэффициенты k1, k2, k3 - обозначают соответственно скорость рождения кроликов , скорость поедания кроликов лисицами и скорость гибели лисиц. В программе понадобится уточнить значение отношений (примерно равное 1), постоянное количество травы (так же принимаемое обычно равным 1), начальные значения популяции кроликов и лисиц (обычно 0,4), продолжительность цикла (типичное значение 700) и шаг по оси времени (обычно равный 1). Программа популяции - это график. Он показывает поведение популяций при различных степенях плодовитости , а так же различных способностях избегать истребление. Совершенно ясно , что в действительности происходят периодические колебания численности популяции кроликов и лисиц , причем за нарастании численности кроликов следует нарастание численности лисиц , которые сменяются уменьшением численности кроликов , сопровождающимся столь же резким снижением численности лисиц , затем повышенным подъемом численности кроликов и так далее, то есть видно , что система самоорганизуется. Программа прилагается. [pic] ЗАКЛЮЧЕНИЕ. Мы видели , что необратимость времени тесно связана с неустойчивостями в открытых системах . И.Р. Пригожин определяет два времени . Одно - динамическое , позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике . Другое время - новое внутренние время , которое существует только для неустойчивых динамических систем . Оно характеризует состояние системы , связанное с энтропией . Процессы биологического или общественного развития не имеют конечного состояния . Эти процессы неограниченны . Здесь , с одной стороны , как мы видели , нет какого-либо противоречия со вторым началом термодинамики , а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано , вообще говоря , с углублением неравновесности , а значит , в принципе с усовершенствованием структуры . Однако с усложнением структуры возрастает число и глубина неустойчивостей , вероятность бифуркации . Успехи решения многих задач позволили выделить в них общие закономерности , ввести новые понятия и на этой основе сформулировать новую систему взглядов - синергетику . Она изучает вопросы самоорганизации и поэтому должна давать картину развития и принципы самоорганизации сложных систем , чтобы применять их в управлении . Эта задача имеет огромное значение , и , по нашему мнению , успехи в ее исследовании будут означать продвижение в решении глобальных задач : проблемы управляемого термоядерного синтеза , экологических проблем , задач управления и других . Мы понимаем , что все приведенные в работе примеры относятся к модельным задачам , и многим профессионалам , работающим в соответствующих областях науки , они могут показаться слишком простыми . В одном они правы : использование идей и представлений синергетики не должно подменять глубокого анализа конкретной ситуации . Выяснить , каким может быть путь от модельных задач и общих принципов к реальной проблеме - дело специалистов. Кратко можно сказать так : если в изучаемой системе можно выделить один самый важный процесс (или небольшое их число) , то проанализировать его поможет синергетика . Она указывает направление , в котором нужно двигаться . И , по-видимому , это уже много. Исследование большинства реальных нелинейных задач было невозможно без вычислительного эксперимента , без построения приближенных и качественных моделей изучаемых процессов (синергетика играет важную роль в их создании). Оба подхода дополняют друг друга . Эффективность применения одного зачастую определяется успешным использованием другого . Поэтому будущее синергетики тесно связано с развитием и широким использованием вычислительного эксперимента . Изученные в последние годы простейшие нелинейные среды обладают сложными и интересными свойствами . Структуры в таких средах могут развиваться независимо и быть локализованы, могут размножаться и взаимодействовать . Эти модели могут оказаться полезными при изучении широкого круга явлений . Известно , что имеется некоторая разобщенность естественно научной и гуманитарной культур . Сближение , а в дальнейшем , возможно , гармоническое взаимообогащение этих культур может быть осуществлено на фундаменте нового диалога с природой на языке термодинамики открытых систем и синергетики . [pic] [pic] ЛИТЕРАТУРА : 1. Базаров И.П. Термодинамика. - М.: Высшая школа, 1991 г. Гленсдорф П. , Пригожин И. Термодинамическая теория структуры , устойчивости и флуктуаций. - М.: Мир, 1973 г. Карери Д. Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г. Курдюшов С.П. , Малинецкий Г.Г. Синергетика - теория самоорганизации. Идеи , методы перспективы. - М.: Знание, 1983 г. Николис Г. , Пригожин И. Самоорганизация в неравновесных системах. - М.: Мир, 1979 г. Николис Г. , Пригожин И. Познание сложного. - М.: Мир, 1990 г. Перовский И.Г. Лекции по теории дифференциальных уравнений. - М.: МГУ, 1980 г. Попов Д.Е. Междисциплинарные связи и синергетика. - КГПУ, 1996 г. Пригожин И. Введение в термодинамику необратимых процессов. - М.: Иностранная литература , 1960 г. Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г. Синергетика , сборник статей. - М.: Мир, 1984 г. Хакен Г. Синергетика . - М.: Мир , 1980 г. Хакен Г. Синергетика . Иерархия неустойчивостей в самоорганизующихся системах и устройствах . - М.: Мир , 1985 г. Шелепин Л.А. В дали от равновесия. - М.: Знание, 1987 г. Эйген М. , Шустер П. Гиперцикл . Принципы самоорганизации макромолекул . - М.: Мир , 1982 г. Эткинс П. Порядок и беспорядок в природе. - М.: Мир , 1987 г [pic] |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |