![]() |
|
|
Экономико-математические методы анализаВ данном примере наиболее тесная связь наблюдается между показателями фондоотдачи (У), идеального веса активной части фондов (Х1) и уровня загрузки производственной мощности (Х3). Парные коэффициенты корреляции соответственно составили 0,937778 и 0,92272. Расчет парных коэффициентов корреляции выявил слабую связь фондоотдачи с электровооруженностью труда Х2 - 0,09361. Гипотеза о наличии мультиколлинеарности отвергается, т. е. все показатели относительно независимы. Для рассматриваемого примера вектор коэффициентов множественной детерминации равен: У = 0,9002; Х1 = 0,9043; Х2 = 0,0100; Х3 = 0,8820. Вектор интерпретируется следующим образом: изменение (вариация) функции (У) на 90,02% зависит от изменения избранных факторов-аргументов; фактора Х1 - на 90,43% от изменения функции (У) и остальных факторов и т. д. В таблице 1.6. приведены частные коэффициенты корреляции. Они показывают связь каждой пары факторов в чистом виде при неизменном значении остальных параметров.
Частные коэффициенты корреляции ниже парных. Это говорит о том, что чистое влияние факторов слабее, чем влияние оказываемое отдельными факторами во взаимодействии с остальными. Статистическая значимость, надежность связи, выраженная частными коэффициентами корреляции, проверяется по t-критерию Стьюдента путем сравнения расчетного значения с табличными при заданной степени точности (Табл. 1.7.).
Обычно в практике экономических расчетов степень точности берется равной 5%, что соответствует вероятности р = 0,05. В таблице приведены критические значения t-критерия Стьюдента для вероятности р = 0,05 и 0,01 при различном числе степеней свободы, которые определяются как (n-1), где n - число наблюдений. В нашем примере при числе степеней свободы 40 - 1 = 39 табличное значение tтабл. = 2,021. Расчетные значения t-критерия (первая графа таблицы) для факторов Х1 и Х3 оказались выше табличных, что свидетельствует о значимости этих факторов для анализируемой функции. Фактор Х2 как незначимый для функции должен быть исключен из дальнейших расчетов. Далее на ЭВМ проводится шаговый анализ с постепенным включением в модель избранных факторов по критерию значимости. На каждом шаге рассматриваются уравнения регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие показатели. После каждого шага перечисленные оценочные показатели сравниваются с рассчитанными на предыдущем шаге. Уравнение регрессии будет тем точнее, чем ниже величина стандартной ошибки (табл. 1.8.).
Если добавление последующих факторов не улучшает оценочные показатели, а иногда и ухудшает их, необходимо остановиться на том шаге, где показатели наиболее оптимальны. Результаты шагового анализа представлены в Табл. 1.8. свидетельствуют о том, что сложившиеся взаимосвязи наиболее полно описывает двухфакторная модель, полученная на втором шаге: у = У = -3,085 = 0,0774 Х1 + 0,0234 Х3. Статистический анализ данного уравнения регрессии подтверждает, что оно значимо: фактическое значение F-критерия Фишера равно 166,7, что значительно превышает Fтабл. = 3,25. Табличное значение F-критерия находится по заданной вероятности (р = 0,95) и числе степеней свободы для столбца таблицы (m - 1), где m - число параметров уравнения регрессии, включая свободный член, и для строки таблицы (n - m), где n - число наблюдений. Например F-табличное находится на пересечении столбца 2 (3 - 1) и строки 37 (40 - 3) и равно 3,25 (Табл. 1.9.). Коэффициент множественной корреляции, равный 0,9488, свидетельствует о тесной взаимосвязи между фондоотдачей и удельным весом активной части основных фондов, а также уровнем использования производственной мощности. Величина коэффициента множественной детерминации 0,9001 свидетельствует о том, что изменение детерминации на 90,01% зависит от изменения учтенных факторов. Параметры уравнения регрессии интерпретируется следующим образом: коэффициент регрессии при Х1 (0,0774) показывает, что увеличение удельного веса машин и оборудования в общей стоимости основных производственных фондов на 1% ведет к росту фондоотдачи на 7,74 копейки. Повышение уровня загрузки мощностей на 1% поднимает фондоотдачу на 2,34 копейки.
В случае обратной связи, т.е. при уменьшении изучаемой функции в связи с ростом фактора-аргумента, коэффициент регрессии имеет знак «минус». Свободный член уравнения ао = -3,085 экономически не интерпретируется. Он определяет положение начальной точки линии регрессии в системе координат. Численное значение коэффициентов эластичности отражает, на сколько процентов изменится функция при изменении данного фактора на 1% (имеется в в иду относительный прирост, а не абсолютный) приведет к росту фондоотдачи на 1,65%; улучшение уровня использования мощности на 1% повысит фондоотдачу на 1,3%. По абсолютной величине бета-коэффициентов можно судить о том, в какой последовательности находятся факторы по реальной возможности улучшения функции. Для нашего примера последовательность переменных выглядит следующим образом:
Отношение Дарбина (коэффициент Дарбина - Уотсона) равно 1,215. Значит, в рядах динамики имеется автокорреляция. Заключительную матрицу данных полностью характеризуют соответствующие заготовки (по столбцам): 1. У - фактическое. 2. У - расчетное. 3. Отклонение (Уфакт - Урасч). 4. Доверительные интервалы (границы, выход за пределы которых имеет незначительную вероятность). Для устранения автокорреляции модель пересчитана по приростным величинам. В результате получено следующее уравнение регрессии: У = -0,0079 + 0,0345; Х3 + 0,0475 Х1. Оно значимо: величина F-критерия равна 178,3. Коэффициент Дарбина составляет 2,48, т.е. близок к 2, что говорит об отсутствии автокорреляции. Коэффициент множественной корреляции (0,9518) выше, чем рассчитанный в первом случае. Величина коэффициента множественной детерминации также выше (0,9060). В окончательном виде уравнение регрессии интерпретируется таким образом: повышение уровня загрузки (производственной мощности) на 1% приведут к росту фондоотдачи на 3,45 копейки, а удельного веса машин и оборудования в общей стоимости основных производственных фондов - на 4,75 копейки. Справочный материал. Обработка данных при постановлении множественных моделей корреляционно-регрессивной зависимости производится на ЭВМ по типовой программе. Исходные данные должны быть достоверны, экономически интерпретируемы, количественно соизмеримы. Расчеты оформляются в виде таблице, в которой первая графа отражает число наблюдений n, вторая (у) - результативный показатель, каждая следующая (х) - факторы в любом порядке, так как факторы машина вводит в процессе шагового анализа по значимости критерия. При заполнении таблицы исходных данных следует указывать одинаковое количество знаков после запятой в пределах одной графы. Для предотвращения ошибок необходимо использовать данные с возможно большим числом значащих цифр (не менее 5). Процентные отношения требуется давать с точностью до 0,001. В таблице 1.10. приведены значения F-критерия для р = 0,95 в зависимости от числа степеней свободы: (m-1) - для столбца и (n-m) - для строки, где m - число параметров уравнения регрессии, включая свободный член; n - число наблюдений.
МЕТОД ДИСКОНТИРОВАНИЯ. Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, т. е. сумма денег, имеющаяся в наличии в настоящее время, обладает большой ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка (р), характеризующая относительные изменения за определенный период (обычно равный году). Предположим, что Ф(t) - номинальная цена будущего потока реальных денег в году t и Ф(0) - цена этого ожидаемого притока или оттока в настоящее время (текущая цена). Тогда (предполагая, что р - постоянная величина) . Смысл проведения расчетов методом дисконтирования состоит в том, чтобы определить сумму, которую следует заплатить сегодня с тем, чтобы получить планируемую отдачу от инвестиций в будущем. Для применения метода дисконтирования об объекте инвестирования необходимо знать следующие исходные данные: величиной инвестиции, планируемые величины денежных потоков или чистого дохода, норма дисконтирования, срок проекта. При расчете денежных притоков и оттоков (кеш-фло) учитывается не только поступления денежных средств от операционной и инвестиционной деятельности, но и потоки от финансовых результатов. Чистый поток наличности (ЧПН) определяется как разность между притоками и оттоками наличности от операционной (производственной) и инвестиционной деятельности минус издержки по финансированию проекта. Чистый дисконтированный доход (ЧДД) определяется как сумма ЧПН за расчетный период. Пример расчета куммулятивного ЧДД приведен в приложении 1. Здесь куммулятивный чистый поток реальных денег (строка 9) рассчитывается сложением куммулятивного чистого потока реальных денег за предыдущий период и чистого потока реальных денег за отчетный год. Например, куммулятивный чистый поток реальных денег в 2002 (5-м) году равен - 8300 млн. руб. (-10000 + 1700). ЧДД (строка 10)рассчитывается по формуле ЧД = строка 8 /, где n - год с момента инвестирования, за который рассчитывается ЧДД. Куммулятивный ЧДД (строка 11) рассчитывается так же, как и куммулятивный чистый поток реальных денег. Коэффициент дисконтирования для приведения чистых денежных потоков к начальному периоду определяется по формуле где Д - ставка дисконтирования (норма дисконта); t - год, за который дисконтируется чистый доход, начиная с момента инвестирования. Значение коэффициентов дисконтирования можно также получить из специальных таблиц дисконтированных величин. Норма дисконта отражать прибыль инвестора, которую он мог бы получить при инвестициях в другой проект. Она является минимальной нормой прибыли, ниже которой инвестор счел бы свои вложения не выгодными. ЧДД характеризует интегральный эффект от реализации проекта и определяется как величина, полученная дисконтированием разницы между всеми готовыми оттоками и притоками реальных денег, накапливаемых в течении горизонта расчета проекта Т (при постоянной ставке процента отдельно для каждого года): |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |