![]() |
|
|
Криптология: точки соприкосновения математики и языкознанияВ эпоху Петра I в качестве системы шифрования широко употреблялась «цифирь» или «цифирная азбука». Цифирь - это шифр простой замены, в котором буквам сообщения соответствовали шифрообозначения, представляющие собой буквы, слоги, слова или какие-нибудь другие знаки. При этом использовались и «пустышки» - шифрообозначения, которым не соответствовали никакие знаки открытого текста, то есть передаваемого сообщения. В госархиве сохранились письма Петра, в которых он передавал цифири различным деятелям для корреспонденции (П.А.Толстому, А.Д.Меньшикову и т.д.). В эпоху царствования Елизаветы Петровны обычным делом была перлюстрация переписки иностранных дипломатов. Результаты этой «работы» несколько раз в месяц докладывались царице. Некоторое время «специалисты» по перлюстрации пропускали те места корреспонденций, смысл которых им был непонятен. В 1742 г. канцлер А.П.Бестужев-Рюмин пригласил на службу в коллегию иностранных дел математика, академика Петербургской АН Христиана Гольдбаха. С этого времени перлюстраторам было дано распоряжение тщательно копировать письма, не опуская при этом кажущихся им мелочей. В результате только за июль - декабрь 1743 г. Х.Гольдбах смог дешифровать 61 письмо министров прусского и французского дворов. В итоге переписка иностранных послов в конце XVIII в. перестала быть тайной для дешифровальной службы России. За свою успешную работу Х.Гольдбах был пожалован в тайные советники с ежегодным окладом в 4500 руб. ШИФРЫ ПОДПОЛЬЯ а) Тюремная азбука - аналог квадрата Полибия. Она позволяла путем перестукивания сообщаться заключенным разных камер. Эта азбука устроена так: в прямоугольник 6*5 записываются буквы русского алфавита в обычном порядке следования, кроме букв «Ё», «Й» и «Ъ». В результате получается таблица:
Каждая из основных букв русского алфавита (без букв «Ё», «Й» и «Ъ») определяется парой чисел - номером строки и столбца. Поэтому вопрос: «Кто здесь?» изображается следующим образом: .. ..... .... ... ... .... .. ... . ..... .. . .... .. ...... . .... ...... б) Парный шифр, ключом которого является фраза, содержащая 15 разных букв. Подписывая под этими буквами буквы в алфавитном порядке, не вошедшие в этот ключ, получаем разбиение 30 основных букв русского алфавита на пары. Чтобы получить из сообщения шифрованный текст, заменяют каждую букву сообщения своим напарником. Так, выбирая в качестве ключа фразу «железный шпиц дома лежит», получим разбиение основных букв русского алфавита на пары, как указано ниже: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ЖЕЛЕЗНЫЙ ШПИЦ ДОМА ЛЕЖИТ Б В Г К Р С У Ф Х Ч Щ Ь Э Ю Я Таким образом, получаем отображение букв основного алфавита (без букв «Ё», «Й» и «Ъ») на последовательность, состоящую из тех же букв:
Поэтому сообщение «Встреча отменяется, явка раскрыта», переходит в следующий шифротекст: «ЕЫЯНВ ЦЮЬЯЭ ВРТВЯ ЫТТЕЗ ЮНЮЫЗ НСЯЮ» Очевидно, что в качестве ключа можно также использовать любую фразу, в которой имеется не менее 15 разных букв основного алфавита. в) По стихотворению - вариант шифра «по книге». Корреспонденты договариваются о достаточно объемном стихотворном произведении, которое заучивают наизусть. Например, роман «Евгений Онегин» или поэма «Кому на Руси жить хорошо». Каждую букву сообщения шифруют парой чисел - номером строки, где встречается эта буква, и номером буквы в ней. Пусть выбрана поэма «Кому на Руси жить хорошо». Пролог поэмы начинается строфой:
Для удобства шифрования (выбранного стихотворения) записывают в виде таблицы нижеследующим способом:
Пользуясь такой таблицей, нетрудно шифровать и расшифровывать любое сообщение, например: «14,5 5,5 7,5 5,10 2,5 2,1 2,12 6,3 8,5 15,7 13,2 7,8 14,7 7,6 5,4 6,6 7,2 12,5 5,4 11,3 10,13 5,15 2,1 15,1 1,16 3,3 5,3 6,14 13,1 4,5 8,4 5,4». «Иванову доверять нельзя явки сменить». ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ В ЦИФРАХ Языкознание и информатика - казалось бы, предметы абсолютно несовместимые. Но как представить текстовую информацию на ЭВМ, если для компьютера вся система счисления представлена в виде двоичного кода? В этом опять помогает криптография с ее возможностью кодировать и декодировать информацию разными методами. Мы попытались рассмотреть ее роль и в этом аспекте. Итак, общий вид числа принято записывать так: an an-1 an-2…a1 a0. Это число в десятичной системе счисления может быть представлено следующей записью: an*10n + an-1*10n-1 +an-2*10n-2 …+a1*101 + a0*1010. Если обозначить через d основание системы счисления, то для перевода записи числа из десятичной в данную систему нужно последовательно делить его на d так, как показано ниже. Например, запишем число 74 в двоичной системе счисления.
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |