реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Дослідження сервоприводу з урахуванням нелінійності

де х - вхідна координата; у - вихідна координата; q(А) - коэффициент гармонійної лінеаризації.

У разі неоднозначних (петлевих) нелінейностей перша гармоніка вихідного сигналу зсунута по фазі щодо вхідного сигналу: цією ж здатністю винен володіти й эквівалентний лінійний елемент, тому при лінеаризації використовується лінійний елемент, властивості якого визначаються рівнянням

. (1.3)

Передавальна функція в даному випадку виражається

, (1.4)

частотна характеристика (s=j?):

. (1.5)

Вибір коефіцієнтів і повинен забезпечити рівність між вихідними коливаннями еквівалентного лінійного і першою гармонікою реального нелінійного елемента.

В ще більш загальному випадку коефіцієнти гармонійної лінеаризації можуть залежати і від частоти:, а частотна характеристика нелінійного елемента прийме вигляд:

. (1.6)

По фізичному значенню визначає відношення амплітуди і зсув по фазі для першої гармоніки вихідних коливань нелінійного елемента. Тому її часто називають еквівалентним комплексним коефіцієнтом посилення нелінійного елемента.

Величини і залежать від властивостей нелінійного елемента, і для всіх типових нелінійностей їх значення є в літературі. Часто вони містять постійні множники, що враховують коефіцієнт посилення, передавальне відношення і т. п., значення яких входять в передавальну функцію лінійної системи, що використовується на першому етапі проектування при розгляді лінійної моделі. Раціонально ввести поняття типової нелінійної ланки, по аналогії з поняттям типових лінійних ланок. (В літературі зустрічаються визначення «приведена нелінійність», «нормована нелінійність» для того ж поняття, яке тут позначається як «нелінійна ланка».)

Коефіцієнти гармонійної лінеаризації типових нелінійних ланок не містять множників, незалежних від амплітуди, і їх властивості залежать тільки від властивостей нелінійності і амплітуди сигналу [1].

2. Аналіз і синтез досліджуваної системи управління сервоприводу з урахуванням впливу нелінійних ділянок

2.1 Аналіз технічного завдання на систему управління

В технічному завданні (ТЗ) систематизовані:

постановка задач проектування систем управління;

початкові дані (первинні характеристики) для об'єкту управління і його початкова математична модель;

опис вигляду для проектує мої системи управління;

умови експлуатації устаткування системи управління (СУ);

вимоги до якості управління;

характеристики енергоживлення устаткування.

ТЗ є основним документом в процесі проектування системи, містить всі початкові дані і вимоги до проектованої системи. Відповідно до пунктів 4.1-4.2 ТЗ формується вербальна модель об'єкту управління (ОУ) сервоприводу, виконана по нормальній гідродинамічній схемі з гідродинамічними органами управління, що є площинами, що відхиляються. На малюнку 2.1 представлена принципова схема типової електрогідравлічної рульової машинки [7], що є гідравлічним підсилювачем золотникового типу, керованим пропорційним електромагнітним елементом 7.

Основними елементами гідропідсилювача є: два золотники 4 і 5, робочий циліндр 17 з поршнем 18, кривошипно-шатунний механізм 14,15. Вихідний вал кривошипно-шатунного механізму 13 кінематично пов'язаний з управляючим органом літального апарату.

Робочий тиск в порожнинах циліндра створюється шестерним насосом 1, електродвигуном 10, що приводиться в рух. Пропорційний електромагнітний елемент 7 має якір. 8. Якір електромагніту кінематично пов'язаний із золотником за допомогою коромисла 3, сполученого з корпусом через плоску пружину 2 і тягу 5, Конструктивно електрогідравлічна РМ виконана у вигляді литого корпусу, що служить одночасно резервуаром з робочою рідиною (маслом), в якому розташовані практично всі перераховані елементи.

Автономність РМ забезпечується за рахунок вбудованого в корпус спеціального шестерного гідронасоса 1 для створення тиску робочої рідини в каналах гідросистеми.

Задані в ТЗ умови експлуатації устаткування СУ - це набір параметрів для проектування або вибору вимірювальних, обчислювальних засобів і виконавчих пристроїв, розміщуваних на електрогідравлічному приводі. Відповідно до приведених в ТЗ вимог до якості процесу управління можливо однозначно визначити структуру і параметри законів управління контурів системи, що забезпечують стійкість і якість процесів, а також виконати аналіз впливу відхилення параметрів об'єкту і регулятора на вказані показники по заданих запасах стійкості.

Вказані в ТЗ вигляд рухи дозволяють одержати уявлення про опорну траєкторію ОУ, що використовується в процесі формування лінійною моделлю, а також служать основою для вивчення робочої моделі ОУ у вигляді системи лінійних диференціальних рівнянь, передавальних функцій [15].

2.2 Математична модель об'єкту управління

2.2.1 Підсилювач сервоприводу

Підсилювач сервоприводу (ПСП) - це підсилювач потужності. На вхід підсилювача подаються струми порядка мікроампера, а на виході одержують до десятків або сотень міліамперів, а іноді навіть дещо ампер.

ПСП є достатньо малоінерційною ланкою. В самих «жорстких» випадках його передавальна функція приймає вигляд:

(2.1)

Частіше за все має малу величину. Передавальну функцію ПСП приблизно можна записати як:

. (2.2)

Де - коефіцієнт посилення підсилювача по потужності.

2.2.2 Рульова машинка

Рульова машинка (РМ) - перетворить енергію, що поступає з ПСП, в механічне переміщення. Особливістю РМ є те, що вона представляє собою інтегруючу ланку, тобто при подачі на вхід сигналу, на виході одержуємо швидкість переміщення (кутову швидкість).

Рульова машина в системах управління літального апарату (СУЛА) самостійно звичайно не застосовується, а входить до складу замкнутого контуру сервоприводу і своїми динамічними і статичними параметрами визначає якість роботи сервоприводу.

Для повороту рульового органу рульова машина приводу повинна розвинути момент, більший моменту, що навантажує вихідний вал РМ. До таких моментів можна віднести:

М інерц. - інерційний;

М демпф - демпфуючий;

М шарн. - шарнірний;

М а1 - момент асиметрії, визначуваний неспівпаданням ліній дії сили тяги r? і осі підвісу;

М а2 - момент асиметрії, визначуваний неспівпаданням сили інерції з віссю підвісу;

М тер - момент від сил сухого тертя.

Таким чином, рушійний момент (МРУШ) врівноважується моментами навантажень:

(2.3)

Зважаючи на складність пристрою машини математичне представлення динамічних процесів в ній достатньо складне. Тому представимо РМ у вигляді двох роздільних динамічних ланок: електромеханічного перетворювача (ЕП) і гідропідсилювача (ГП) в кожному з яких є свій рухомий елемент (якір і поршень).

Тоді передавальна функція РМ може бути представлена у вигляді передавальних функцій двох послідовно сполучених ланок:

(2.4)

Передавальну функцію електромеханічного перетворювача можна одержати з рівнянні руху якоря:

(2.5)

Рівняння (2.5) в стандартній операторній формі матиме вигляд:

(2.6)

де

IЯ - приведений момент інерції якоря;

B - коефіцієнт електромагнітного демпфування і демпфуючих властивостей середовища, в якому переміщається якір;

С - жорсткість пружного елемента якоря;

IУ - управляючий струм якоря (вхідна дія);

?Я - кут повороту якоря (вихідний параметр ланки);

K - коефіцієнт пропорційності, що характеризує залежність між струмом управління і електромагнітним моментом, що розвивається.

З рівняння (2.6) можна одержати передавальну функцію для електромеханічного перетворювача (ЕП):

(2.7)

де - статичний коефіцієнт передачі ЕП;

ТЯ - постійна часу, рівна ;

? - ступінь заспокоєння якоря, рівна .

Для отримання рівняння динаміки гідропідсилювача (ГП) і його передавальної функції можна скористатися рівнянням Бернулі, що встановлює зв'язок між переміщенням золотників і зусиллям тиску рідини, що розвивається, на поршень, і записати рівняння руху поршня залежно від переміщення золотника (якоря, який механічно пов'язаний із золотниками):

(2.8)

де

m - маса поршня;

у - координата переміщення поршня (вихідна величина);

?Я - кутове переміщення якоря ЕП (вхідна величина);

k1 - приведений коефіцієнт демпфування;

k2 - приведений коефіцієнт пружності, що враховує зусилля від шарнірного моменту;

k3 - коефіцієнт пропорційності між кутовим переміщенням якоря і зусиллям, створюваним різницею тиску на торцях силового поршня.

Позначивши в рівнянні (2.8) через передавальне число від поршня до вихідного валу рульової машини, а через ? - кут повороту вихідного валу, одержимо:

(2.9)

З рівняння (2.9) можна одержати передавальну функцію підсилювача сервоприводу:

(2.10)

де

- статичний коефіцієнт передачі підсилювача сервоприводу;

TПСП - постійна часу ПСП, рівна ;

? - ступінь загасання, рівна або .

Враховуючи високу вихідну потужність, що розвивається на валу РМ, відсутність шарнірного моменту в ненавантаженому стані РМ і крихту власних пружних властивостей в конструкції підсилювача сервоприводу, його передавальну функцію можна представити у вигляді:

(2.11)

де

- коефіцієнт посилення підсилювача по потужності;

ТП - постійна часу ПСП.

Об'єднуючи передавальну функцію двох ланок WЕП(s) і WПСП(s), згідно (2.7) і (2.11), одержимо передавальну функцію РМ.

Залежно від коренів виразу, дана передавальна функція може бути коливальною ланкою або ж надається як дві інерційні ланки.

Більш коректним (точним) для передавальної функції РМ є вираз:

. (2.12)

При обліку коливання пального в баках, корпусу ракети і т.д., необхідно враховувати і більш високоякісні члени передавальної функції. В цьому випадку РМ може описуватися диференціальними рівняннями 14-15 порядку. Постійні часу, ,,,, залежить від їх природи.

Управляючий вузол (УВ) - є пропорційний електромеханічний перетворювач, звичайне могутнє поляризоване реле. Зусилля якоря поляризованого реле достатні для переміщення золотників в гідросистемі РМ. Силовий вузол (СВ) - звичайно складається з робочого (силового) циліндра з поршнем, що приводиться в рух гідрожидкістю, поступаючої під тиском від вузла живлення (ВЖ).

Основними вимогами, що пред'являються до рульової машинки, є: досягнення якнайменшої кількості коливальних ланок, досягнення якнайменшого значення постійних часу і вибір власної частоти. Власна частота РМ не повинна співпадати з частотою інших ланок виробу.

2.2.3 Датчик зворотного зв'язку

Звичайно як датчик зворотного зв'язку застосовуються, або індукційних датчики (ІД) або потенціометричні. Якщо датчик ЗЗ потенціометр, то в ЗЗ стоїть тільки масштабний опір. Від нього сигнал ЗЗ подається на суматор ПСП. Якщо датчик індукційний, то необхідно мати фазочутливий випрямляч (ФЧВ), а далі знову ставиться масштабний опір.

Перший датчик простіше, легко, але має два експлуатаційні недоліки:

- ковзаючий контакт

- східчаста характеристики

що обмежує його вживання.

Індукційний датчик більш надійних, а отже не вимагає частих перевірок.

Передавальна функція ланцюга зворотного зв'язку має вигляд:

, (2.13)

2.3 Аналіз частотних характеристик досліджуваного об'єкту

Для математичного опису об'єкту управління і системи в цілому спочатку побудуємо структурну схему досліджуваної системи управління сервоприводу без урахування нелінійності (мал. 2.3). Функціональна схема системи управління будувалася на підставі функціональної схеми системи (мал. 1.1).

При виборі параметрів сервоприводу оптимізації підлягає круговий коефіцієнт підсилення (добротність контура сервоприводу):

. (2.14)

Спочатку визначається, а потім з урахуванням відомого коефіцієнта перерозподіляються значення і , щоб виконувалося дана рівність.

Звичайно прагнуть зробити якомога більше, оскільки при цьому зменшуються постійні часу, зменшується запізнювання контура сервоприводу, поліпшується чутливість всіх елементів і розкид параметрів, тобто в цілому поліпшується динаміка сервоприводу. Збільшенню перешкоджає обмежена потужність, а також те, що при певному значенні контур стане нестійким.

Запишемо передавальну функцію сервоприводу (СП) в розімкненому стані:

; (2.15)

Ця стійка ланка, оскільки в знаменнику вираз:

дає негативні корені, а корінь s=0 - нульовий полюс, можна обійти справа. Побудуємо АФЧХ.

З амплітудно-фазочастотної характеристики (АФЧХ), яка представлена на малюнку 2.4 видно, що круговий коефіцієнт не може бути як завгодно великим, оскільки при цьому ми одержимо обхват крапки (1, j 0), а значить нестійкість сервоприводу (критерій Найквіста).

При проходженні характеристики через крапку (1, j0) набудемо критичне значення кругового коефіцієнта. Таким чином, при K>KКР обхвату цієї крапки не буде (система стійка).

При оптимізації кругового коефіцієнта необхідно, щоб розкиди параметрів не привели до нестійкості системи. Звичайно розкиди параметрів повинні мати нульове математичне очікування (М) і підлеглі нормальному закону розподілу. Розкиди кругового коефіцієнта визначаються розкидами кожного з коефіцієнтів: . Якщо ці розкиди некорельовані, мають М=0 і підлеглі нормальному закону розподілу, то достатньо знайти розкиди кругового коефіцієнта. Ми вважатимемо, що коефіцієнти мають випадкові значення.

- математичні очікування (номінальні значення). В технічних умовах на елементи указуються розкиди на . Кожне із значень не перевищує 3? з вірогідністю ? 0,997. Трудомісткості полягають в тому, що розкиди звичайно в% від номінальних значеннях, але це можна перевести в одиниці вимірювання, наприклад: задано ?R - відхилення (розкид) якого-небудь параметра.

(2.16)

де - середньоквадратичне відхилення.

З теорії вірогідності дисперсія кругового коефіцієнта визначиться як:

(2.17)

По цій формулі можна визначити ?K в%, а потім перевести в одиниці вимірювання самого параметра.

(2.18)

де 3?К=?K.

Тут одне невідоме - K, яке визначаємо, знаючи ?К і KКР. Крім того повинні бути задані вимоги до запасу стійкості замкнутого контура.

Використовуючи ці положення, можна обчислити круговий коефіцієнт.

2.3.1 Вибір кругового коефіцієнта

Задано:

1) критичне значення кругового коефіцієнта - KКР (його завжди можна визначити, побудувавши годограф);

2) розкиди (з технічних умов);

3) вірогідність стійкої роботи сервоприводу - PСП.

Визначити: номінальне значення кругового коефіцієнта (добротність) - K0

1. Визначаємо ?K.

[%],

2. Розкид параметрів визначає

3. Значення PСП (Ф(і)) в таблицях інтеграла вірогідності відповідає відносна величина U (або n), рівна:.

В нашому випадку x - це круговий коефіцієнт K, виступаючий як випадкова величина.

Величина U показує, скільки разів вміщається ? в ?K.

Таблиця інтеграла вірогідності має вигляд: див. табл. 2 в додатку Б.

4. З графіка інтеграла вірогідності, малюнок 2.5 маємо:

,

де .

Тому або - вираз для визначення номінального значення кругового коефіцієнта сервоприводу.

2.3.2 Нелінійності сервоприводу

Основна нелінійність сервоприводу (ОНСП) - це нелінійність рульової машинки, нелінійність статичних характеристик.

Статичні характеристики рульової машинки:

1) швидкісна;

2) моментальна.

Швидкісна характеристика рульової машинки - це залежність кутової швидкості вихідного сигналу рульової машинки від вхідного сигналу.

(2.19)

де

- на вхід РМ подається струм,

- на виході РМ - кутова швидкість.

Моментна залежність моменту, що розвивається вихідним штоком, від вхідного сигналу, яка представлена на малюнку 2.6а.

Зона нечутливості є обов'язково; вона обумовлена особливістю конструкцій РМ і нечутливістю реле на вході.

Насичення Mmax обумовлено обмеженням потужності. Моментної характеристикою безпосередньо не використовується.

Зона нечутливості обумовлена тими ж причинами. Що і для розглянутої моментної характеристики. І ще тим, що і РМ завжди необхідно подолати якесь навантаження, якийсь момент M1. Треба подати команду ; до цього вихідний шток нерухомий, швидкість рівна нулю. Зона нечутливості «плаває» залежно від моменту. Це вносить невизначеність при проектуванні.

Зона нечутливості складається як би з двох частин. Вона обумовлена:

1. Конструкцією РМ.

2. Моментом, прикладеним до вихідного штока РМ.

Щоб зменшити момент, прикладений до вихідного штока РМ, прагнуть зробити крутіше моментальну характеристику (ближче до релейної).

Всі ці нелінійності необхідно враховувати при проектуванні сервоприводу.

Побудова частотних характеристик для даного об'єкту проводитиметься в середовищі MATLAB/Simulink.

На вказаному графіку видно що, що пік амплітуди рівний А=1.6°, стале значення амплітуди, рівний А=1.2°и час перехідного процесу tПП=0.25 c, який задовольняє вимогам ТЗ. Величина перерегулювання складає приблизно ?=0.6 від сталого значення амплітуди і задовольняє вимогам ТЗ.

Побудуємо ЛАЧХ і ЛФЧХ нескоректованої системи за допомогою команд MATLAB, а також ЛАЧХ і ЛФЧХ скоректованої системи.

Запас стійкості по амплітуді рівний 40.5 дБ, по фазі -375 град. Зв'язана частота ?С=233 рад/с. Запас стійкості системи не достатні, щоб система залишалася стійкою при варіаціях параметрів, приводу і інших функціональних пристроїв в допустимих межах.

3. Експериментальна частина

Задачею експериментальної частини є, одержати навики дослідження статичної і динамічних характеристик електрогідравлічної рульової машинки (ЕГРМ), з використанням реальної установки (в аудиторії 402 радіо корпусу). Як об'єкт управління використовували електрогідравлічний рульовий привод, який представлений на малюнку 3.1.

Малюнок 3.1 - Електрогідравлічна рульова машинка

На вихідному валу ЕГРМ встановлений рухомий електричний контакт, який стикається з сектором нерухомого контакту, має певний тарований (заданий) центральний кут . Послідовно в ланцюг контактів включається годинник для визначення тривалості замкнутого стану контактів при обертанні вихідного валу ЕГРМ. Для подачі управляючого сигналу використовували джерело командних сигналів. Включення стенду здійснюється включенням тумблерів.

а) перемикач встановити в положення 2, перемикачі, і в положення 1. Перемикачі і використовуються для відстежування зміни сигналів в контрольних точках системи і живлення;

_б) рухомий контакт ЕГРМ встановити в положення розімкненого стану по відношенню до нерухомого контакту, шляхом повороту вихідного валу ЕГРМ;

в) ручкою регулятора задаючого пристрою (ЗП) встановити по вольтметру необхідне значення управляючої напруги (знак сигналу залежить від повороту ЗУ управо або вліво по відношенню до середнього положення ЗП);

г) включити тумблери і (подається живлення на годинник);

д) включити тумблер, після чого вихідний шток ЕГРМ після певного часу займе нове украй положення;

е) після зупинки штока ЕГРМ вимкнути тумблер живлення електродвигуна і записати свідчення годинника в таблиці 3.1-3.3. Перемкнути перемикач () в положення 2 і по першому (другому) променю осцилографа визначити напругу на виході СМ, після чого встановити перемикач () в положення 3 і по першому (другому) променю осцилографа визначити вихідний сигнал на воді ПМ. Всі свідчення занести в таблиці 3.1-3.3;

ж) здійснити установку годинника в нульове положення відповідною кнопкою скидання годинника;

з) змінити знак на управляючої дії ЗП на протилежний і повторити пп. е-ж.

и) з певним інтервалом зміни управляючої дії повторити пп. в-к.

к) визначити значення кутових швидкостей обертання валу ЕГРМ, як відношення кута повороту вихідного штока до проміжку часу замкнутого стану контактів:

, (3.1)

де - фіксоване значення кута; - інтервал часу за який шток ЕГРМ при і-том управлінні здійснює поворот на фіксований кут. К ПМ = 3.

Таблиця 3.1 Характеристики ЕГРМ в першому положенні перемикача

Uзад, В

Uсум, В

Uпп, В

, рад/с

1

0

0

0

0

2

0,5

1,11

1,5

0,075

3

1

2,31

3

0,152

4

1,5

3,5

4,5

0,3

5

2

4,9

6

0,4

6

2,5

6,27

7,5

0,455

7

3

7,47

9

0,465

8

3,5

8,67

10,5

0,48

9

4

9,9

12

0,471

10

4,5

11,13

13,5

0,477

11

4,95

11,57

14,85

0,48

12

-0,5

-1,55

-1,5

0,009

13

-1

-2,75

-3

0,063

14

-1,5

-4,04

-4,5

0,153

15

-2

-5,3

-6

0,27

16

-2,5

-6,77

-7,5

0,35

17

-3

-7,9

-9

0,41

18

-3,5

-9,2

-10,5

0,45

Страницы: 1, 2, 3, 4, 5


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.