реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Выбор способа сварки диафрагменной лопатки паровой турбины

Достоинства электронно-лучевой сварки (ЭЛС)

Электронный луч успешно применяется в машиностроении для сварки изделий из высоколегированных сталей, в частности из высокохромистых коррозионно-стойких сталей (12Х13). Это объясняется рядом достоинств ЭЛС при сварке этих сталей:

1. Минимальная деформация свариваемого изделия, т. к. поток электронов внедряется в свариваемое изделие на всю глубину проплавления, что обеспечивает получение минимальной металлоемкости сварочной ванны. Это обеспечивается возможностью концентрации большой мощности в электронном луче и управления ею в широких пределах в сочетании с высоким вакуумом в рабочем объеме.

2. Высокие физико-химические характеристики сварного соединения непосредственно после сварки позволяют исключить последующую механическую обработку.

3. Относительно высокая погонная энергия при сильной степени ее концентрации, т.е. энергия, вводимая в участок сварного соединения за определенный промежуток времени. При этом достигается высокая скорость кристаллизации металла сварного шва и минимальное термическое воздействие сварочного нагрева на основной металл в ОШЗ (локальность сварочного нагрева).

Применительно к стали 12Х13 необходимо отметить то, что последний пункт имеет к ней особое значение. Количество -феррита в этой стали зависит от уровня температуры нагрева. В участках ОШЗ, нагреваемых до температур близких к Тсолидуса, количество -феррита может быть подавляющим. Такая структура характерна для участка ЗТВ примыкающего к линии сплавления. Ширина этого участка мало зависит от температуры подогрева, но возрастает с увеличением qп - погонной энергии, которая при ЭЛС велика, но в то же время одновременно уменьшается склонность стали к холодным трещинам.

Основные параметры электронного луча в непрерывном и импульсном режимах

Параметрами электронного луча, измеряемыми в процессе обработки, являются:

- ток луча I,

- ускоряющее напряжение U,

- ток фокусирующей системы Iф,

- рабочее расстояние (расстояние от центра фокусирующей системы до поверхности свариваемой детали) l,

- скорость перемещения электронного луча V,

- угол сходимости луча .

Кроме основных параметров, существуют другие количественные показатели ЭЛС:

1. Мощность электронного луча

(Вт) q= IU.

2. При заданном рабочем расстоянии l, токе фокусировки Iф и мощности сварки можно определить диаметр электронного луча d и, следовательно, удельную мощность q2 (Вт/см2), которая является одним из определяющих параметров процесса:

q2 = IU/d2/4.

3. Погонная энергия (кал/см)

Q = 0,24IU/V

не является определяющим параметром, так как при электронно-лучевой обработке в зависимости от величины удельной мощности q2, при одинаковой погонной энергии можно получить различную конфигурацию зоны обработки.

При воздействии в импульсном режиме средняя мощность (Вт)

qи = IUf,

где I - величина тока в импульсе, А; f - частота следования импульсов, Гц; - длительность импульса, с.

4. Скорость обработки в импульсном режиме (см/с)

V = B (1-k)/(-п) = B (1-k) f,

где п - время паузы между импульсами, с; k - коэффициент перекрытия точек (обычно k = 0,5 - 0,9); В-диаметр зоны обработки (точки).

5. Шаг точек (см) S = V (+п), скорость обработки

V = S/(+п),

6. Параметром, характеризующим соотношения длительности импульса и времени паузы в импульсном режиме, является скважность цикла

G = /(+п),

7. Наиболее существенным и одновременно наиболее трудноопределяемым параметром электронного луча является его диаметр. При заданных плотностях тока эмиссии с катода, температуре катода и сферической аберрации линзовой системы пучок электронов с максимальным током может быть сфокусирован в пятно минимального диаметра.

d = S0(I/U)3/8,

где S0 - постоянная электронно-оптической системы, вычисляемая эмпирически.

8. Разряжение (мм. рт. ст., Па).

9. Частота автоколебаний: f Vсв/d.

4. Исследование влияния основных параметров сварки на форму шва и качество сварного соединения

Влияние тока электронного луча на глубину проплавления металла

С целью определения зависимости величины сварочного тока от толщины соединяемых деталей была проведена серия экспериментов. Сварку выполняли с помощью электронно-лучевой установки «Луч-4» на образцах из нержавеющей стали. Полученные зависимости при разных скоростях сварки и при общих остальных параметрах (U = 30 кВ, l = 100 мм, Iф = 100мА).

Из представленных графиков можно сделать вывод, что при увеличении тока электронного луча, глубина проплавления тоже увеличивается.

Влияние удельной мощности электронного луча на геометрию зоны проплавления

В связи с тем, что энергетический баланс процесса электронно-лучевой сварки близок к аналогичному балансу при дуговой сварке, связь параметров электронного луча с характеристиками зоны проплавления можно дать в виде уравнения для секундного объема плавления металла:

0,24 IUит = VFпрSм, (1)

где Fпр - площадь проплавления, см2; Sм = (сТпл + Lпл) - теплосодержание жидкого металла при температуре плавления, кал/г.

Из этого уравнения следует, что чем выше погонная энергия Q = 0,24 IU/V, тем больше площадь проплавления. Это действительно справедливо для процесса дуговой сварки, который в большинстве случаев осуществляется при q2<q2*. Для электронно-лучевой сварки экспериментально установлено, что обобщенный параметр - погонная энергия Q не является определяющим при количественной оценке процесса. При постоянной погонной энергии можно получить глубину проплавления и 15 и 2 мм. Этот факт следует считать естественным, так как образование кинжального проплавления при электронно-лучевой сварке определяется не только количеством введенной энергии, но, и ее плотностью.

Эффективность процесса проплавления металла электронным лучом определяется величиной теплового КПД пр= ит, где и - эффективный; т - термический КПД. Величина эффективного КПД и при воздействии луча с образованием канала в веществе практически приближается к единице. При оценке эффективности процесса проплавления существенную роль играет величина термического КПД.

Для использования в инженерных расчетах в уравнениях (1) должна быть учтена удельная мощность электронного луча q2.С этой целью произведены эксперименты по электронно-лучевой сварке с постоянной погонной энергией, но разной степенью фокусировки (разной удельной мощностью). Сварку выполняли с помощью электронно-лучевой установки ЭЛУ-9Б с электронной пушкой ЭП-60/10М на образцах из нержавеющей стали размером 500 х 80 х 20 мм.

В первой серии опытов образцами служили две пластины толщиной 10 мм каждая, сварку выполняли встык с зазором. Во второй серии в качестве образцов использовали пластины толщиной 20 мм.

В процессе сварки через каждые 60 мм длины шва изменяли фокусировку электронного луча на 4 мА в диапазоне токов фокусировки от 76 до 100 мА. Таким образом, концентрация мощности при постоянной погонной энергии в процессе наложения сварного шва постепенно увеличивалась, а после достижения максимума уменьшалась. Рабочее расстояние сохранялось постоянным h = 90 мм (см. табл. 3).

Анализ макрошлифов и очертаний зон проплавления показал, что при постоянном значении погонной энергии можно в широком диапазоне изменять геометрию проплавления с помощью только одного параметра режима сварки - степени фокусировки электронного луча. При этом очертание зоны проплавления изменялось от полукруглого до кинжального, а при больших отрицательных значениях степени фокусировки переходило в «клыкообразное». Опыт показал также, что максимуму глубины проплавления соответствует минимальная ширина шва. Зависимость глубины проплавления Н от степени фокусировки электронного луча Iф приведена на рис. 5. Под степенью фокусировки Iф понимают алгебраическую разность токов магнитной линзы при сварке и фокусировке на малом токе луча (2-4 мА): Iф = ±(Iф - I0) - За нулевую точку отсчета принят ток фокусировки Iф = 88 мА.

Характер кривой Н= f (Iф) (рис. 4) Н, свидетельствует, что степень фоку - мм сиповки, соответствующая максимальному проплавлению на данном режиме, зависит от тока луча: с уменьшением тока луча до величины, обеспечивающей максимальное проплавление, Iф стремится к нулю.

Таблица 3. Характеристика экспериментальных очертаний зон проплавления

Параметр

Условный индекс шва

1

2

3

4

5

6

7

Ток фокусировки Iф, мА.

76

80

84

88

92

96

100

Степень фокусировки Iф, мА.

-12

-8

-4

0

+4

+8

+12

Коэффициент формы шва,

Кф = Н/В.

2,11

4

2,45

1,46

1,0

0,72

0,56

Экспер-ная ширина зоны проплавления, мм

24

22

21

20,6

32

47

59

Опыт

Ток фокусировки, мА

72

76

80

84

88

92

96

100

№1

Влияние изменения рабочего расстояния пушка-деталь на геометрию зоны проплавления

Заглубление в материал фокуса электронного луча может существенно увеличить глубину отверстия. Аналогичный эффект наблюдается и при электронно-лучевой сварке с кинжальным проплавлением.

С целью определения влияния заглубления фокального пятна на геометрию зоны проплавления при экспериментах на электронно-лучевой установке ЭЛУ-9Б с электронной пушкой ЭП-60/10М на образцах из нержавеющей стали размером 500 х 80 х 20 мм сварку осуществляли с переменной рабочей дистанцией Н.

После сварки четырех швов, полученных при одинаковой погонной энергии на различных рабочих дистанциях пушки и при постоянной степени фокусировки во всех случаях Iф= 0, оказалось, что площади проплавления являются эквивалентными. Такой факт имеет большое практическое значение, так как позволяет сохранять неизменную форму проплавления на различных рабочих дистанциях электронной пушки, находящихся в расчетных (паспортных) пределах для данной электронно-оптической системы.

Влияние ускоряющего напряжения на геометрические характеристики проплавления

Экспериментальные данные (рис. 5.) показывают, что ускоряющее напряжение существенно влияет на глубину проплавления: с увеличением ускоряющего напряжения при прочих равных условиях глубина проплавления увеличивается.

Связано это с уменьшением рассеяния электронов пучка на атомах пара при повышении ускоряющего напряжения. Действительно, например, при U = 30 кВ коэффициент поглощения = 2,4*106/U2 = 2,67*103 см2/г, а при U = 100 кВ = 2,4*102 см2/г, т.е. уменьшается более чем на порядок. Таким образом, повышение ускоряющего напряжения обеспечивает большую кинетическую энергию электронов и увеличивает пробег электронов в парах металла.

Н, мм

2

3

24

16

1

8

0 30 60 90 110 I, мА

Рис. 5. Зависимость глубины проплавления от тока луча у нержавеющей стали при V = 0,3 см/с: 1 - U = 30кВ, 2 - U = 60кВ, 3 - U = 100кВ

Эксперименты проводились на ЭЛУ при давлении в рабочей камере 5*10-5 - 1*10-4 мм рт. ст.

Аналогичным образом подтвердилась зависимость глубины проплавления от мощности сварки, в которой происходит одновременное увеличение обоих параметров.

При постоянной общей и удельной мощности и радиусе электронного луча rе была получена экспериментальная зависимость глубины проплавления от скорости сварки и ускоряющего напряжения (см. рис. 6).

Н, мм

60

3

40

2

30

1

10

0 0,3 0,6 0,9 Vсв, см/с

Рис. 6. Зависимость глубины проплавления от скорости сварки и ускоряющего напряжения: 1 - U = 30 кВ, 2 - U = 63 кВ, 3 - U = 100 кВ.

Все вышеперечисленные экспериментальные зависимости сохраняют свою суть при их теоретическом исследовании. На основании этих закономерностей можно написать зависимость глубины проплавления и ускоряющего напряжения:

Н . (см. рис. 7).

h/h (30 кВ), отн. ед.

2,0

1,6

1,4

1,0

20 40 60 80 Uуск, кВ

Рис. 7. Теоретическая зависимость глубины проплавления от ускоряющего напряжения при постоянных общей мощности и удельной мощности.

Исследование второстепенных параметров ЭЛС

Влияние параметров электронного луча на его диаметр

Экспериментально доказано, что с увеличением расстояния до объекта обработки диаметр электронного луча возрастает линейно. Это можно проследить по осциллограмме, представленной на рис. 8.

180

0,4

140

0,2

100

0

-0,1 0,1

Iф=f(l)

4

3

2

1

Рис. 8. Изменение диаметра луча d, тока фокусировки Iф электронно - лучевой установки типа Луч-4 в зависимости от расстояния l от объекта обработки для случая U = 30 кВ = const; 1-I = 35; 2-60; 3-80; 4-100 mA.

Пользуясь уравнением прямой, можно написать выражение для диаметра луча: d = d0+kl. Коэффициенты d0 и k в этом уравнении можно определить, построив соответствующие зависимости d0 = f(I), k = f(I).

Зависимость диаметра луча от тока см. на рис. 9.

мА

120

100

80

60

40

20

Рис. 9. Зависимость диаметра луча от тока при постоянном ускоряющем напряжении U = 30 кВ (для работы в режиме сварки)

Экспериментальная проверка по глубине проплавления некоторых металлов при воздействии электронного луча, формируемого электронно-оптической системой типа Луч-4 на разных расстояниях l при одних и тех же параметрах луча, показывает, что глубина проплавления аналогично диаметру уменьшается с увеличением расстояния до объекта сварки.

Установлено, что распределение плотности тока по радиусу луча является Гауссовым:

j = jm exp(-r2/re),

где r - текущее значение радиуса луча; re - радиус луча на уровне jm/e (нормальный радиус); jm - максимальное значение плотности тока.

Глубина пробега электронов в твердом теле

Максимальную глубину пробега электронов в твердом теле при ЭЛС чаще всего определяют по формуле Шонланда

= 2,35*10-12U2/.

Где U - ускоряющее напряжение, В; - плотность, г/см3; - глубина проникновения, см.

Экспериментально и теоретически установлено, что максимум энерговыделения по глубине пробега находится под поверхностью. На рис. 10 представлена экспериментальная зависимость изменения глубины проникновения электронов в железо от ускоряющего напряжения.

, м

10-4

8

6

4

3

2

10-5

8

6

4

3

10-6

8

6

4

3

10-7

0 20 40 60 80 100 120 U, кВ

Рис. 10. Изменение глубины проникновения электронов в железо в зависимости от ускоряющего напряжения U

Таким образом, с увеличением ускоряющего напряжения (а следовательно, и глубины проникновения электронов) максимум температуры перемещается в глубь металла. Поэтому теоретически возможна ситуация, когда поверхность материала не успевает нагреться, хотя на глубине (в максимуме энерговыделения) достигается температура кипения.

На характер распределения температурного поля в зоне электронно-лучевого нагрева существенное влияние оказывает отношение диаметра луча к глубине пробега электронов. Установлено, что, например, обработка материала (плавление и выброс) эффективна только при условии d>2, т.е. использование очень тонких пучков электронов затруднено.

Разряжение

Одним из параметров ЭЛС является степень разряжения (мм. рт. ст., Па). В большей степени этот параметр зависит от характеристик, обеспечиваемых в ЭЛУ.

ЭЛС осуществляют чаще всего вертикальным либо горизонтальным лучом в вакуумных камерах, размеры которых зависят от габаритов свариваемых изделий. Объем камер современных установок составляет от 0,1 (и менее) до сотен кубических метров. Камера с находящейся на ней (или в ней) электронной пушкой, формирующей электронный луч, может откачиваться как до высокого ( 10-3 Па), так и до низкого ( 1 - 10 Па) вакуума, но с отдельной откачкой объема электронной пушки до 10-3 Па.

Даже в низком вакууме 1 Па содержание кислорода в 17 раз, а азота в 10 раз меньше, чем в особо чистом аргоне, поэтому при ЭЛС защита расплавленного металла очень эффективна. В вакууме электронный луч сохраняет свою удельную мощность, т. к. в нем не происходит рассеяние электронов вследствие отсутствия атомов и молекул атмосферы.

Частота автоколебаний

Для ЭЛС характерно, что при постоянном во времени потоке энергии возникают колебания физических параметров, характеризующих систему луч - вещество, а именно: потока пара, интенсивности светового излучения, эмиссии электронов и т.п. из зоны воздействия луча. Существует критическое значение потока энергии для возбуждения колебаний: если q2 > q*2, то колебания возникают, если q2 < q*2, не возникают. Здесь q2*= Sкип/н*, где Sкип = (сТкип + Lкип) - теплосодержание кипящего металла, Дж/см3; - массовая толщина слоя, г/см2, н - эффективный КПД электронно-лучевого нагрева поверхности, * - характерное время, зависящее от теплофизических свойств металла.

При нагреве вещества постоянным во времени потоком энергии, который больше некоторого критического значения, отмечают существенные особенности в характере изменения температуры поверхности: она не стремится к постоянному значению, но колеблется относительно некоторого среднего значения. Эта закономерность обусловлена возникновением автоколебаний температуры и плотности пара в процессе нагрева.

Регистрация характеристик автоколебаний дает новые возможности для построения систем контроля и регулирования процесса ЭЛС.

В процессе ЭЛС луч надвигается на зону металла перед передней стенкой канала и проплавляет ее на глубину Н за время t, т.е. периодически с частотой f Vсв/d углубляется в металл (периодическое «строгание» передней стенки).

Таким образом, при формировании сварного шва наблюдаются два основных типа периодических процессов: периодическое испарение по мере углубления электронного луча в металл (с частотами порядка единиц и десятков килогерц) и колебания жидкого металла в сварочной ванне за счет периодического «строгания» передней стенки (с частотами порядка единиц и сотен герц). В литературе также отмечены плазменные колебания (с частотами порядка 106 Гц). Зависимость амплитуды колебаний от частоты для всех трех типов колебаний при ЭЛС показана на рисунке 11.

А

жидкость

пар

плазма

101 103 105 107 f, Гц

Рис. 11. Зависимость амплитуды от частоты автоколебаний для различных процессов в канале при ЭЛС.

Специфические дефекты сварных швов при ЭЛС

Критическое изменение некоторых параметров при ЭЛС с несквозным проплавлением может привести к появлению дефектов в сварном соединении. Такими дефектами в основном являются: не заполненные металлом полости размером до 5 - 10 мм и длиной до 20 - 30 мм и периодическое несплавление корня шва.

Это объясняется тем, что давление пара в канале прямо пропорционально удельной мощности луча, а при одной удельной мощности можно получить разную глубину проплавления, т. к. чем меньше скорость, тем больше глубина проплавления. При правильном подборе удельной мощности, мощности и скорости сварки давление пара в канале отвечает условию

Р > (РG + Р) = gH + /r,

где Р - давление пара в канале; РG - давление, обусловленное весом жидкого металла; Р - давление, обусловленное поверхностным натяжением жидкого металла.

В некоторых случаях, на выходе из канала это условие может не соблюдаться, т.е. возможно захлопывание канала жидким металлом и образование полости (рис. 12).

а б в

Рис. 12. Схема поведения канала при ЭЛС.

а - канал свободен от жидкости; б - отражение волны жидкого металла от хвостовой части ванны; в-захлопывание канала

Еще одним часто встречающимся специфическим дефектом при ЭЛС является отклонение канала проплавления от линии стыка вследствие отклонения луча магнитным полем при сварке сталей с остаточной намагниченностью. Для ликвидации этого дефекта прибегают к предварительному размагничиванию свариваемого изделия.

5. Выбор параметров режима сварки для изготовления изделия

Основные параметры ЭЛУ «Луч-4»

Для правильного подбора параметров режима сварки необходимо основываться на следующих условиях:

- - требуемые геометрические характеристики шва,

- - требуемое качество (прочностное и химическое) шва,

- - технологические возможности ЭЛУ.

Последний пункт является важным критерием для подбора параметров сварки, т. к. они должны входить в предел возможностей данной установки.

Рассмотрим основные параметры ЭЛС типа «Луч-4» в (табл. 5).

Табл. 5. Основные параметры ЭЛС типа «Луч-4».

№ п\п

Наименование параметра

Норма

1.

Максимальные размеры свариваемого изделия, мм.

Диаметр

Длина

900

840

2.

Вакуум, мм рт. ст.

5*10-5

3.

Ускоряющее напряжение электронного луча, кВ.

30

4.

Ток электронного луча, мА.

450

5.

Ход электронно лучевой пушки, мм. Вдоль камеры

Поперек камеры

575

840

6.

Давление охлаждающей воды,/см2.

2-3

7.

Потребляемая электрическая мощность, кВт.

8

8.

Режим работы.

Полуавтоматический

9.

Наблюдение за сваркой.

Через иллюминатор

10.

Обслуживающий персонал, чел.

2

Исходя из этих норм можно подбирать параметры, обеспечивающие выполнение первых двух пунктов условий (см. выше).

Подбор основных параметров ЭЛС для ЭЛУ «Луч-4»

Необходимые параметры для проведения процесса сварки:

1. Ускоряющее напряжение U.

2. Скорость перемещения электронного луча V.

3. Ток луча I.

4. Рабочее расстояние (расстояние от центра фокусирующей системы до поверхности свариваемой детали) l.

5. Ток фокусирующей системы Iф.

Выбор ускоряющего напряжения

Экспериментальные данные (рис. 6,7.) показывают, что ускоряющее напряжение существенно влияет на глубину проплавления: с увеличением ускоряющего напряжения при прочих равных условиях глубина проплавления увеличивается. Это увеличение происходит пропорционально по квадратичному закону.

Для выбора ускоряющего напряжения для сварки диафрагменной лопатки необходимо знать требуемую глубину проплавления, которая данном соединении составляет 12 - 13 мм. При этом необходимо учитывать, что сварка будет производиться на установке «Луч-4», обладающей определенными рамками по выбору данного параметра режима.

Основываясь на этих данных и используя графическую зависимость глубины проплавления от ускоряющего напряжения при постоянных общей мощности и удельной мощности выбираем Uуск = 30 кВ.

Выбор скорости перемещения электронного луча

Для определения скорости перемещения электронного луча воспользуемся экспериментальной зависимостью глубины проплавления от скорости сварки и ускоряющего напряжения (см. рис. 6).

Из предыдущего пункта известно, что ускоряющее напряжение равно 30 кВ. Следовательно, можно определить скорость сварки (рис. 13).

Н, мм

30

10

0 0,3 0,6 0,9 Vсв, см/с

Рис. 13. Зависимость глубины проплавления от скорости сварки и ускоряющего напряжения U = 30 кВ.

Таким образом, принимаем Vсв = 0,3 см/с или равным 20 см/мин.

Выбор тока луча

В исследовательской части работы приведена зависимость величины сварочного тока от толщины соединяемых деталей из стали 12Х13 при трех разных скоростях сварки: 1 - V = 10 см/мин, 2 - V = 20 см/мин, 3 - V = 30 см/мин (рис. 3). В нашем случае, для сварки диафрагменной лопатки, используется V = 20 см/мин (рис. 14). Другие параметры сварки при этом остаются постоянными (ток фокусировки - Iф, ускоряющее напряжение - Uуск, и рабочая длина).

По результатам выбора принимаем Iсв = 100 А. Возможности установки «Луч - 4» позволяют получить такой ток, что не противоречит

3-ему условию по подбору параметров.

Увеличить вероятность правильного выбора сварочного тока можно путем использования еще одной зависимости (см. рис. 5). Как и предыдущая, она показывает зависимость величины сварочного тока от толщины соединяемых деталей из нержавеющей стали, но при постоянном значении напряжения и скорости сварки (рис. 15).

Все эти зависимости справедливы при давлении в рабочей камере 5*10-5 мм рт. ст. Следует помнить, что степень разряжения влияет на рассеяние луча, а значит и на геометрические характеристики шва.

Таким образом, подтвердилась зависимость глубины проплавления от мощности сварки, в которой происходит одновременное увеличение обоих параметров.

Выбор рабочего расстояния

Рабочее расстояние - расстояние от центра фокусирующей системы до поверхности свариваемой детали или просто - расстояние пушка - деталь.

Заглубление в материал фокуса электронного луча может существенно увеличить глубину отверстия. Аналогичный эффект наблюдается и при электронно-лучевой сварке с кинжальным проплавлением, а при сварке диафрагменной лопатки оно таким и является.

При одинаковой погонной энергии на различных рабочих дистанциях пушки и при постоянной степени фокусировки Iф= 0 площади проплавления являются эквивалентными. Таким образом сохраняется неизменность формы проплавления на различных рабочих дистанциях электронной пушки, находящихся в расчетных (паспортных) пределах для данной электронно-оптической системы.

Принимаем рабочее расстояние от пушки до изделия равным 100 мм.

Выбор тока фокусирующей системы Iф

Для нахождения численного значения тока фокусирующей системы Iф, рассмотрим графическую зависимость на рис. 16.

Iф, мА

180

140

100

60

Iф=f(l)

0 25 50 75 100 125 150 l, мм

Рис. 16. Изменение тока фокусировки Iф электроннолучевой установки типа Луч-4 в зависимости от расстояния l от объекта обработки для случая U = 30 кВ = const;

Зная рабочее расстояния, можно найти ток фокусировки. Т.о. Iф = 100 мА.

Итоги выбора параметров

В результате подбора основных параметров получены следующие численные значения:

Uуск = 30 кВ,

Iсв = 100 мА,

Iф = 100 мА,

L = 100 мм,

Vсв = 20 см/мин,

Частота колебаний - 300 Гц.

Перед внедрением их в производство (перед занесением в маршрутную карту) следует провести сварку образцов - свидетелей с соответствующими испытаниями. После этого возможна их корректировка, целью которой должно быть улучшение качества сварного соединения.

6. Характеристика источника питания установки аргонодуговой сварки

Выпрямитель универсальный для сварки неплавящимся электродом модели ВСВУ-400 предназначен для питания установок автоматической, полуавтоматической и ручной электродуговой сварки обычной и сжатой, непрерывной и импульсной (пульсирующей) дугой, жаропрочных, нержавеющих сталей и титановых сплавов в аргоне.

Основные параметры.

1. Номинальный сварочный ток при ПВ = 60% и длительности цикла 60 мин, Iном = 400 А.

2. Диапазон регулирования Iсв при непрерывной сварке, ток импульсный - при импульсной сварке, Iсв = 5+10% - 400+10%.

3. Диапазон регулирования Iдежурного, Iдеж = 5+10% - 100+10%.

4. Напряжение холостого хода, Uх.х.= не более 100 В.

5. Номинальное рабочее напряжение, Uном= 30 В.

6. Потребляемая мощность, Р - не более 21 кВА.

7. Номинальное напряжение трехфазной питающей сети частотой 50 Гц, Uном= 380+10%.

8. ВАХ источника питания - падающая.

7. Технологический процесс. Изделие - лопатка диафрагменная

0000 Заготовительная.

Доставить на сварочный участок поковки.

0005 Подготовительная.

Места сварки и околошовную зону на расстоянии 20 мм протереть бязью, смоченной в спирте (ацетоне) и отжатой.

0010 Контрольная.

Визуальный технический контроль качества обезжиривания.

0015 Сборочно-сварочная.

Установить в сборочное приспособление лопатку (поз. 1) и прижать вставку (поз. 2) к лопатке эксцентриковым зажимом. Зазор между вставкой и лопаткой не более 0,2 мм. Вставка смещена относительно лопатки на расстояние 10 мм по узкой стороне (см. чертеж).

Использовать источник питания - выпрямитель ВСВУ-400, редуктор АР-40, горелку РГА-400, ротаметр РС-3. Прихватить детали поз. 1 и поз. 2 в местах стыка ручной аргоно - дуговой сваркой: длина прихваток - L=10 мм, количество прихваток - 6 шт. Прихватки выполнять от центра к краям. Iсв=70 А, Uсв=8-12 В, Св - 08Г2С 2 мм, прямая полярность, расход газа Q=6-8 л/мин.

0020 Маркирование.

Маркирование ударом (по ТТ чертежа).

Использовать набор клейм, молоток слесарный.

0025 Контрольная.

Технический контроль сборки под ЭЛС. Использовать набор щупов №2, измерительную линейку. Проверить зазор между деталью поз. 1 и поз. 2; в профильной полости зазор более 0,1 мм не допускается, зазор в стыке не более 0,2 мм.

Проверить неплоскостность вставки, допустимая неплоскостность 0,2 мм.

Внимание!

Собранная партия лопаток не должна пролеживать до сварки более 3-х дней. В процессе сварки лопатки должны быть укрыты полиэтиленовой пленкой или бумагой.

0030 Подготовительная.

Произвести замеры силового магнитного поля лопатки, собранной под ЭЛС. Прибор FSM - 1.

Произвести размагничивание лопатки перед ЭЛС. Допустимая намагниченность составляет 1-2 А/см. Использовать стенд для размагничивания 0861 - 5467.

Поместить 7 лопаток в приспособление, предварительно удалив прижимную планку.

0035 Сварочная.

Электронно-лучевая сварка на ЭЛУ «Луч - 4». Заварить лопатку электронно-лучевой сваркой с параметрами:

Iсв=100 мА,

Iф =100 мА,

Vсв=20 см/мин,

Uуск=30 кВ,

Частота колебаний 300 Гц,

Lраб=100 мм.

Сварку начинать с широкой части торца. Одновременная загрузка в камеру - 7 лопаток (см. приспособление). На концах вставок допускается непровар 5 мм, образованный резким уменьшением сварочного тока. Выполнение разглаживающего прохода не допускается.

0040 Термическая.

Отпуск. Снятие сварочных напряжений.

Т, 0С 700

t, с

Использовать электрическую печь KS-1300.

0045 Слесарная.

Зачистить усиление сварного шва после ЭЛС. Использовать шлифовальную машинку ИП 2009-п1, металлическую щетку. Выступание сварного шва над поверхностью планки не допускается.

0050 Правка.

Использовать гидропресс.

1. Вырезать прокладки 40х30 мм, =1,5 мм, Ст10 (для 4-х лопаток) 3 штуки.

Установить лопатки на вставку п. 2. Замерить неплоскостность.

2. Установить с подгонкой по месту под лопатку прокладки. Произвести рихтовку лопатки для получения неплоскостности вставки до 0,7 мм согласно чертежу. Рихтовать каждую лопатку 3 раза.

3. После рихтовки 4-х лопаток повторно вырезать прокладки и произвести рихтовку.

0055 Контрольная.

Технический контроль геометрических размеров изделия. Набор щупов №2.

Установить лопатку на разметочную плиту. Положить на нее мерительную линейку. Проверить неплоскостность. Допустимая неплоскостность не более 0,7 мм.

0060 Подготовительная.

Подготовить поверхность подреза для сварки. Использовать пневмо - мех. щетку и машину шлиф ИП 2009-п1. Зачистить дефектную поверхность до чистого металла: Lшва=0,3 м, глубина 1 мм или отдельные поры в кол-ве 6 штук длиной 2,5 мм.

Обезжирить поверхность, обработав ее бязью, смоченной в спирте (ацетоне) и отжатой.

0065 Сварочная.

Подварить оставшиеся подрезы после ЭЛС. Использовать источник питания - выпрямитель ВСВУ-400, редуктор АР-40, горелку РГА-400, ротаметр РС-3. Осуществлять ручной сваркой неплавящимся электродом в среде аргона. Iсв=100 А, Uсв=10-14 В, Св - 04Х19Н11М3 2 мм, прямая полярность, расход газа Q=6-8 л/мин. При сварке не допускать перегрева металла.

0070 Слесарная.

Зачистить усиление сварного шва после ручной сварки неплавящимся электродом в среде аргона. Использовать шлифовальную машинку ИП 2009-п1, металлическую щетку. Выступание сварного шва над поверхностью лопатки не допускается.

0075 Контрольная.

1. Внешний осмотр - 100%.

2. Ультразвуковая дефектоскопия - 100%.

Для ультразвукового контроля использовать дефектоскопы УД-2 или ДУК-13ИМ.

Заключение

Для изготовления диафрагменной лопатки паровой турбины выбрана высокохромистая жаропрочная сталь мартенситно-ферритного класса сталь 12Х13. Данный материал обеспечивает высокую технологичность изделия, по сравнению с другими материалами. Выбор производился с учетом экономических и технологических (химическая и механическая характеристики) факторов оценки. Учитывая экономический фактор данной задачи, сталь 12Х13 является одной из самых дешевых в своем классе высокохромистых сталей, т. к. чем выше степень легирования, тем выше цена стали и степень ее распространенности в промышленности.

Для сварки диафрагменной лопатки из стали 12Х13 был выбран способ с использованием электронного луча. Это объясняется рядом достоинств ЭЛС при сварке этих сталей:

1. Минимальная деформация свариваемого изделия, т. к. поток электронов внедряется в свариваемое изделие на всю глубину проплавления, что обеспечивает получение минимальной металлоемкости сварочной ванны.

2. Высокие физико-химические характеристики сварного соединения непосредственно после сварки позволяют исключить последующую механическую обработку.

3. Относительно высокая погонная энергия при сильной степени ее концентрации, т.е. энергия, вводимая в участок сварного соединения за определенный промежуток времени. При этом достигается высокая скорость кристаллизации металла сварного шва и минимальное термическое воздействие сварочного нагрева на основной металл в ОШЗ (локальность сварочного нагрева).

Все эти положительные стороны ЭЛС с сочетанием правильно подобранных параметров режима сварки помогают достичь наилучшего качества сварного соединения.

Выбор параметров режима ЭЛС производился на основе детального теоретического и экспериментального анализа каждого из них. Выявление закономерностей влияния некоторых из параметров на геометрические характеристики сварного соединения помогло максимально исключить возможность появления в нем дефектов.

Литература

Волченко В.Н. Справочник. Сварка и свариваемые материалы, т. 2. - М.: МГТУ им. Н.Э. Баумана, 1998.

Арзамасов В.И., Мухин Г.Г. и др. Материаловедение. - М.: МГТУ им. Н.Э. Баумана, 2001.

Рыкалин Н.Н., Углов А.А., Зуев И.В. Справочник. Электроннолучевая обработка материалов. - М.: Машиностроение, 1981.

Акулов А.И., Бельчук Г.А. Технология и оборудование сварки плавлением. - М.: Машиностроение, 1977.

Башенко В.В. Электронно-лучевые установки. - М.: Машиностроение, 1972.

Шиллер З., Гайзиг У., Панцер З. Электроннолучевая технология. - М.: Энергия, 1980.

Лившиц Л.С. Металловедение. - М.: Машиностроение, 1979.

Степанов В.В. Справочник сварщика. - М.: Машиностроение, 1982.

Журавлев В.Н., Николаева О.И. Справочник. Машиностроительные стали. - М.: Машиностроение, 1992.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.