реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Паровоздушная газификация углей

- тип газифицирующего агента;

- температура и давление процесса;

- способ образования минерального остатка и его удаление;

- способ подачи газифицирующего агента;

- способ подвода тепла в реакционную зону.

Все эти параметры взаимосвязаны между собой и во многом определяются конструктивными особенностями газогенераторов.

Обычно газифицирующими агентами служат воздух, кислород и водяной пар. При паро-воздушном дутье отпадает необходимость в установке воздухоразделения, что удешевляет процесс, но получается газ низкокалорийный, поскольку сильно разбавлен азотом воздуха.

Температура газификации в зависимости от выбранной технологии может колебаться в широких пределах 850-2000 0С. диапазон давлений газификации от 0.1 до 10.0 МПа и выше. Газификация под давлением предпочтительна в случаях получения газа, используемого затем его в синтезах, которые проводятся при высоких давлениях (снижаются затраты на сжатие синтез-газа).

В газогенераторах с жидким шлакоудалением процесс проводят при температурах выше температуры плавления золы (обычно выше 1300-1400 0С). ”Сухозольные“ газогенераторы работают при более низких температурах, и зола из него выводится в твердом виде [6].

По способу подачи газифицирующего агента и по состоянию топлива при газификации различают слоевые процессы, при которых слой кускового топлива продувается по противоточной схеме газифицирующими агентами, а также объёмные процессы, в которых большей частью по прямоточной схеме топливная пыль взаимодействует с соответствующем дутьем.

Процесс газификации угля первого поколения: Лурьги, Винклера и Копперс-Тотцека, достаточно хорошо изучены и применяются в промышленности в ряде стран для получения в основном синтез-газа и заменителя природного газа.

Большинство крупных газогенераторов на твердом топливе работают по прямому процессу с газификацией топлива в движущемся слое. При этом движение топлива и дутья происходит навстречу друг другу. По этой схеме подаваемое в газогенератор дутьё происходит через шлковую зону, где оно несколько подогревается, и далее поступает в зону горения топлива при недостатке кислорода. Кислород дутья вступает в реакции с углеродом образуя оксид и диоксид углерода одновременно.

Основными недостатками процесса Лурьги является сравнительно небольшая скорость разложения водяного пара дутья, необходимость использования водяного пара как охлаждающего теплоносителя, предотвращающего сплавления и спекания золы, а также содержания в газе высших углеводородов и фенолов [9].

Повышение температуры реализовано в процессе БГЛ с жидким шлакоудалением, разработанном фирмой “ British gas “ на основе процесса Лурьги. Этим способом можно перерабатывать малореакционные и коксующие угли широкого гранулометрического состава. Выделенные из газа смолы и пыль возвращают в газогенератор, причем количество возврата может доходить до 15% на уголь. Процесс проверен на установки мощностью по углю 350 т/сут. В Ухтфильде. Процесс считается перспективным для применения в США , где ведутся работы по его совершенствованию [10].

Процесс Винклера основан на использовании псевдоожиженного слоя топлива. Принцип газификации мелкозернистого топлива в кипящем слое заключается в том, что при определенной скорости дутья и крупности топлива, лежащей на решетки слой топлива приходит в движение.

Процесс Винклера обеспечивает высокую производительность, возможность переработки различных углей и управлением составом конечных продуктов. Однако в этом процессе велики потери непрореагированного угля до 20-30% (масс.), выносимого из реактора, что ведет к потере теплоты и снижению энергетической эффективности процесса. Псевдоожиженный слой отличается большой чувствительностью к изменению режима процесса, а низкое давление лимитируется производительность газогенераторов [5].

По методу Винклера в разных странах работают 16 заводов ( Испании, Японии, Германии, Кореи и другие). Газогенератор типа Винклера имеет диаметр 5,5 м; высоту 23 м и максимальная единичная мощность действующих газогенераторов этого типа в настоящее время составляет 33 тыс. м3 газа в час [6].

В США разработан процесс газификации угля в аппарате с последующей агломерацией золы- так называемый процесс-V, предназначенный для производства низкокалорийного газа, который может быть использован в качестве сырья для получения водорода, аммиака или метанола, а также как топлива. Газификацию проводят в присутствии кислорода и паров воды в псевдоожиженном слое при давлении 5,7-7 МПа и температуре 980-1100 0С. Угольная пыль отделяется в циклонах, причем из внешнего циклона пыль возвращается в газогенератор. Газ не содержит жидких продуктов, что облегчает его очистку [6].

Вследствие высокой температуры процесса для газификации могут быть использованы угли любого типа включая спекающиеся, а полученный газ беден метаном и не содержит конденсирующиеся углеводородов, что облегчает его последующую очистку. К недостаткам процесса можно отнести низкое давление, повышенный расход кислорода, необходимость тонкого размола топлива [5].

Первый промышленный газогенератор этого типа производительностью 4 тыс. м3 в час синтез газа, был создан в 1954 году. По методу Коппер-Тотцека в мире работают 16 заводов (Япония, Греция и другие). Газогенератор Коппер-Тотцека с двумя форсунками имеет диаметр 3-3,5 м; длину 7,5 м и объём 28 м3 в час [6].

Известны неудачные попытки осуществить прямоточную факельную газификацию в условиях сухого золоудаления. В настоящее время газификацию угольной пыли проводят с жидким шлакоудалением. Для этой цели получили распространение газогенераторы вертикального типа, близкие по конструктивному оформлению к котельным агрегатам с пылеугольным сжиганием (Бабкок-Вилькокс) и газогенераторы с горизонтальной камерой газификации (Копперс-Тотцек).

Большие работы по созданию газогенераторов для газификации пылевидных топлив под высоким давлением с жидким шлакоудолением проводит американская фирма “Тексако”, которая является первопроходцем в применении для газификации водо-угольных суспензий. В газогенератор подают водную суспензию угля с концентрацией до 70% (мас.), что упрощает решение многих технических вопросов и позволяет автоматизировать процесс [5]. В 1984 году японской фирмой “Убе Индастриз” пущен крупнейший в мире газогенератор Тексако мощностью по углю 1500 тонн в сутки, вырабатывающий газ для синтеза аммиака [7]. На заводе Aioi (Япония) в 1987 году была сооружена пилотная установка производительностью 6 т. в сутки угля для газификации водо-угольных су суспензии по процессу Тексако, как наиболее прогрессивному. По проектным данным процесс осуществляется под давлением 1,96-2,94 МПа при температуре 1400 0С с получением смеси газов из оксида углерода, диоксида углерода и водорода, до 1991 года проводились научно-исследовательские работы совместно с “Tokyo Electric Power Co” и было переработано 533 тонны угля. Степень конверсии углерода достигала 100%. В синтез-газе содержалось до 52,3% оксида углерода, 33,2% водорода, 12,7% диоксида углерода. На воздушном дутье при подогреве суспензии до 150 0С степень конверсии достигала 72% [8].

Недостатком этого способа подачи угля является значительный расход тепла на испарение воды в газогенераторе, но уголь не требует предварительной сушки и исключается подача пара в газогенератор . Процесс Тексако характеризуется также повышенным удельным расходом кислорода 400-450 м3 на 1000 м3 синтез-газа. Соотношение уголь : вода в суспензии колеблется в разных пределах от 70:30 до 45:55. Водо-угольные суспензии используются также для газификации под давлением 10 МПа в газогенераторе Би-2эс. Кроме того, при эксплуатации оборудования газогенераторных станций, на которых используются водо-угольные суспензии, выявлены трудности по предотвращению коррозии циркуляционных насосов и инжекционных клапанов. Однако эти недостатки не уменьшают значимости, так как процесс высокоэффективен [9].

Производство газа из твердых горючих ископаемых может осуществляться на основе двух технологических приёмов: в газогенераторах наземного типа и под землёй (подземная газификация угля).

Подземную газификацию углей как метод физико-химического превращения угля в горючий газ непосредственно на месте залегания угольных пластов впервые начали реализовывать в бывшем Советском Союзе в 1933 году. В начале 60-х годов эксплуатировали пять опытно-промышленных станций “Подземгаз”, в том числе в Украине на каменных углях- Лисичанскую в Донбассе.

Основные стадии процесса подземной газификации углей- бурение с поверхности земли на угольный пласт скважин, соединение этих скважин каналами по угольному пласту, и наконец, нагнетание в одни скважины воздушного или кислородного дутья и извлечение из других скважин образовавшегося газа. Газообразование в канале происходит за счет химического взаимодействия свободного и связанного кислорода с углеродом и термического разложения угля.

Недостатки традиционной технологии подземной газификации угля- низкая теплота сгорания получаемого газа, за счет осуществления процесса на воздушном дутье, недостаточная стабильность и управляемость процесса, недостаточная экологическая чистота предприятий подземной газификации углей, прежде всего из-за неполного улавливания соответствующих продуктов, большой объём буровых и подготовительных работ, достигающей в себестоимости газа 30-35%; несмотря на это традиционная подземная газификация является надежной базой для её дальнейшего совершенствования.

В США наиболее интенсивные работы по подземной газификации угля были начаты в 1972 году. В течении 1972-1989 годах было проведено более тридцати экспериментов в различных горно-геологических условиях. Если первые полевые работы проводили на воздушном дутье с получением низкокалорийного газа, то основное большинство последующих испытаний осуществляли на парокислородном дутье с получением среднекалорийного газа. Наилучшие результаты с США были достигнуты при направленном подводе дутья к реакционной поверхности угольного пласта, что подтверждает результаты ранее проведенных экспериментов у нас в стране.

В настоящее время наиболее детальное и квалифицированное исследование возможностей подземной газификации угля в США осуществляет компания “Энерджи Интернейшинал”. В докладе ее президента А.Г. Синглтона проанализированы результаты подземной газификации угля в США и сформулированы некоторые аспекты.

Основные выводы исследований подземной газификации угля следующие:

1) Эксплуатационные затраты на производство генераторного газа при подземной газификации угля меньше, чем при надземной газификации угля.

2) Капитальные затраты, при близких по размерам предприятий, гораздо меньше чем при подземной газификации угля.

3) Экологические показатели технологии подземной газификации угля выходят на максимум при более низкой производительности предприятия.

4) Синтез-газ при подземной газификации угля вполне успешно конкурирует с аналогичным продуктом, получаемым при паровым риформинге природного газа.

Широкомасштабное промышленное внедрение подземной газификации угля в нашей стране возможно только при условии повышения степени управляемости процесса, одновременном снижении удельных затрат и увеличении использовании угольного пласта.

Основные резервы повышения эффективности подземной газификации угля.

- совершенствование схемы газификации к конструкции подземного газогенератора с целью активного и направленного взаимодействия окислителя с реакционной поверхности огневого забоя, несмотря на выгазовывания угольного пласта.

- Снижение непроизводительных потерь тепла.

- Большие перспективы открываются перед подземной газификации угля при переходе на большие глубины 700 м и более.

Американские исследователи провели технико-экономическое сравнение различных вариантов использования генераторного газа, полученного при надземной газификации угля и подземной газификации угля. Согласно этим данным, применение подземной газификации угля позволяет снизить эксплуатационные затраты по сравнению с наземной газификацией угля при производстве генераторного газа. Практически более 78% запасов каменных и почти 34% бурых углей Украины могут быть использованы для подземной газификации угля.

На основании обобщения литературных и с учетом реальных условий воплощение на территории Украины нами выбрана схема паровоздушная газификации угля в стационарном слое.

2.ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА

Газификацией называют высокотемпературные процессы взаимодействия органической массы твердых или жидких горючих ископаемых или продуктов их термической переработки с воздухом, кислородом, водяным паром, диоксидом углерода или их смесями, в результате которых органическая часть топлива обращается в горючие газы.

Единственным твердым остатком при газификации должна явиться негорючая часть угля -- зола. В действительности не удается полностью перевести органическую массу угля в газ, и в шлаке остается часть горючей массы топлива.

Общие принципы работы аппаратов для газификации -- газогенераторов--можно рассмотреть на примере простейшего газогенератора, изображенного на рис 2.

Рис. 2. Схема работы слоевого газогенератора:

А -- устройство газогенератора 1 -- затвор, 2 -- корпус газогенератора, 3 -- колосниковая решетка; 4 -- чаша для отвода золы;

Б -- изменение состава газа по высоте газогенератора (паровоздушное дутье, обогащенное кислородом)- 1 -- кислород, 2 -- водяной пар, 3 -- диоксид углерода, 4 -- монооксид углерода, 5 -- водород, 6 -- метан и пары смолы; В -- распределение температур по высоте газогенератора

Газогенератор такого типа представляет собой вертикальную шахту из листовой стали, футерованной огнеупорным кирпичом. В верхней части его имеется загрузочный люк, снабженный затвором 1. В нижней части газогенератора установлена колосниковая решетка 3, через которую в шахту непрерывно подается газифицирующий агент. Сверху непрерывно поступает уголь. При подаче в газогенератор воздуха в зоне, расположенной непосредственно у колосниковой решетки (окислительная зона, или зона горения), происходит горение твердого горючего ископаемого с образованием СО и СО2 по реакциям-

2С + О2 = 2СО + 218,8 МДж/кмоль углерода (2.1)
С + О2 = СО2 + 394,4 МДж/кмоль углерода (2.2)

Образующийся диоксид углерода в восстановительной зоне восстанавливается новыми порциями углерода в оксид углерода:

СО2 + С = 2СО-- 175,6 МДж/кмоль углерода (2.3)

Если вместе с воздухом в генератор подают также водяной пар, то в восстановительной зоне дополнительно протекают реакции:

С + Н2О = СО + Н2 -- 132,57 МДж/кмоль углерода (2.4)

С + 2Н2О = СО2 + 2Н2 -- 89,5 МДж/кмоль углерода (2.5)

В этом случае образующийся газ содержит два горючих компонента: оксид углерода и водород.

В газовой фазе могут протекать и другие реакции. Так, возможна реакция между оксидом углерода и водяным паром:

СО + Н2О=СО2 + Н2 + 43,1 МДж/кмоль (2.6)

При взаимодействии СО и Н2 может образоваться метан:

СО + ЗН2 =СН4 + Н2О + 203,7 МДж/кмоль (2.7)

который в условиях процесса подвергается термическому распаду

СН4 --> С + 2Н2 --71,1 МДж/кмоль (2.8)

Сочетание всех этих реакций и определяет состав образующегося газа, который изменяется по высоте газогенератора. После окислительной и восстановительной зон, называемых вместе зоной газификации, выходят горячие газы при температуре 800--900 °С. Они нагревают уголь, который подвергается пиролизу в вышележащей зоне. Эту зону принято называть зоной пиролиза, или зоной полукоксования. Выходящие из этой зоны газы подогревают уголь в зоне сушки. Вместе эти две зоны образуют зону подготовки топлива. Таким образом, при слоевой газификации сочетается термическая переработка топлива и собственно газификация полукокса или кокса, полученного в зоне подготовки топлива. Поэтому газ, отводимый из аппарата, содержит не только компоненты, образовавшиеся в процессе газификации, но и продукты пиролиза исходного твердого горючего ископаемого (газ пиролиза, пары смолы, водяной пар). При охлаждении отводимого из газогенератора газа происходит конденсация смолы и воды, которые далее необходимо очистить и подвергнуть переработке.

В этом процессе изменяется и состав твердой фазы. В зону газификации, как отмечалось выше, поступает уже не уголь, а кокс, а из окислительной зоны выводится раскаленный шлак, который охлаждается в чаше 4 с водой, выполняющей одновременно функции гидравлического затвора, а затем выводится из аппарата.

Из изложенного выше следует, что газификация представляет собой сложное сочетание гетерогенных и гомогенных процессов. Возможно и последовательное, и параллельное протекание этих реакций. Механизм этих процессов до сих пор еще до конца не выяснен. Так, если первой стадией взаимодействия кислорода и углерода в зоне горения считают образование поверхностного углерод-кислородного адсорбционного комплекса, то вопрос о том, что является первичным продуктом взаимодействия водяного пара с раскаленным коксом, является предметом дискуссий.

В газогенераторе протекает ряд экзотермических и эндотермических реакций. Равновесия реакций (2.1) и (2.2) смещены в сторону образования СО и СО2. Равновесие эндотермических реакций (2.3) -- (2.5) при повышении температуры смещены в сторону образования соответственно СО и Н2, но выход указанных продуктов (равновесный) уменьшается при повышении давления.

Равновесие экзотермической реакции (2.6) сдвинуто в сторону образования исходных продуктов при температурах выше 1000 °С и не зависит от давления.

Образование метана по реакции (2.7) более вероятно при повышении давления газификации.

Термодинамические расчеты позволяют определить равновесные составы газов в зависимости от температуры и давления газификации. Однако использовать результаты этих расчетов для предсказания реального состава газов трудно из-за значительных различий в скоростях реакций и влияния на процесс ряда технологических факторов.

Скорость реакций газификации лимитируется скоростью химических превращений в газовой фазе и на поверхности твердой фазы, а также скоростью диффузии. При температурах 700--800 °С процесс газификации тормозится преимущественно химической реакцией, а при температурах выше 900 °С -- преимущественно диффузией. В реальных условиях суммарный процесс газификации протекает в промежуточной области, и скорость его зависит от кинетических и диффузионных факторов.

Процессы газификации интенсифицируют путем повышения температуры, увеличения давления газификации (что позволяет значительно увеличить парциальные давления реагирующих веществ), а также увеличения скорости дутья, концентрации кислорода в дутье или развития реакционной поверхности.

Для приближения процесса газификации к кинетической области используют тонкоизмельченный уголь и ведут процесс при высоких скоростях газовых потоков.

Выход газа, его состав и теплота сгорания изменяются в зависимости от того, что используется в качестве дутья. Названия газов, получаемых при использовании различных видов дутья, приведены ниже:

Дутье Название

Сухой воздух Воздушный газ
Смесь воздуха и водяного пара Полуводяной газ
Водяной пар (при внешнем подводе тепла) Водяной газ

Смесь кислорода и водяного пара Оксиводяной газ (газ парокислородного дутья)

Для сопоставления составов и свойств этих газов следует сделать следующие допущения: газовая смесь состоит только из горючих компонентов (единственный возможный балласт -- азот воздуха); газифицируется чистый углерод; не учитываются потери тепла. Газы, отвечающие этим допущениям, называют идеальными генераторными газами.

Получаемые на практике генераторные газы отличаются по выходу и составу от идеальных. Во-первых, уголь нельзя считать чистым углеродом, поэтому выход горючих компонентов в расчете на 1 кг органической массы угля всегда значительно меньше. В первую очередь это относится к молодым углям, отличающимся высоким содержанием кислорода, а тем более к торфу.

Во-вторых, в генераторных газах всегда содержится заметное количество СО2. Химическое равновесие в газогенераторах не достигается, поэтому содержание СО2 всегда превышает равновесную концентрацию.

В-третьих, в зоне подготовки угля образуются пары воды и летучие продукты термического разложения, которые попадают в состав газа.

В любом газе содержится большее или меньшее количество азота, что снижает реальную теплоту сгорания газа, так как при сжигании газа часть тепла расходуется на нагревание балластного азота.

В реальных условиях газификации вследствие неравномерного распределения зон и смешения потоков часть горючих газов сгорает с образованием водяного пара и СО2. Кроме того, в реальных условиях газификации неизбежны различные тепловые потери (в окружающую среду, с горячими газами, со шлаком и уносимым топливом). Поэтому фактические значения термических коэффициентов полезного действия значительно меньше величин, рассчитанных для идеальных условий.

Процессы газификации можно классифицировать по следующим признакам:

1) по теплоте сгорания получаемых газов (в МДж/м3): получение газов с низкой (4,18--6,70), средней (6,70--18,80) и высокой (31--40) теплотой сгорания;

2) по назначению газов: для энергетических (непосредственного сжигания) и технологических (синтезы, производство водорода, технического углерода) целей;

3) по размеру частиц используемого топлива: газификация крупнозернистых, мелкозернистых и пылевидных топлив;

4) по типу дутья: воздушное, паровоздушное, кислородное, парокислородное, паровое;

5) по способу удаления минеральных примесей: мокрое и сухое золоудаление, жидкое шлакоудаление;

6) по давлению газификации: при атмосферном (0,1 -- 0,13 МПа), среднем (до 2--3 МПа) и высоком давлении (выше 2--3 МПа);

7) по характеру движения газифицируемого топлива: в псевдостационарном опускающемся слое, в псевдоожиженном (кипящем) слое, в движущемся потоке пылевидных частиц;

8) по температуре газификации: низкотемпературная (до 800 °С), среднетемпературная (800--1300 °С) и высокотемпературная (выше 1300 °С);

9) по балансу тепла в процессе газификации: автотермический (стабильная температура поддерживается за счет внутренних источников тепла в системе) и аллотермические, т. е. нуждающиеся в подводе тепла со стороны для поддержания процесса газификации. Внешний подвод тепла можно осуществлять с помощью твердых, жидких и газообразных теплоносителей [10].

3. ВЫБОР, ОБОСНОВАНИЕ И ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ

В предложенной нами работе принят метод паровоздушной газификации угля в неподвижном (стационарном) слое, позволяющие применять угли почти всех марок и получать химические продукты с минимальным количеством стадий. Применяя паровоздушную газификацию угля позволяет удешевить получение генераторного газа, причем процесс идет при атмосферном давлении.

Выбранный процесс имеет ряд существенных достоинств перед другими способами газификации углерода твердого топлива:

- возможность построения агрегатов большой единичной мощности;

- универсальность метода, который позволяет применять все виды угля, а также переход с паро-воздушного дутья на кислородное и парокислородное дутье;

- небольшая металлоемкость;

- малое количество стадий для подготовки угля.

Страницы: 1, 2, 3, 4


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.