реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Механизм подъема и его расчет

- при роликовых башмаках

(1.22)

Сила сопротивления движению противовеса

- при роликовых башмаках

(1.23)

1.4.1 Расчет натяжения канатов подвески кабины Sк и противовеса Sп в рабочих и испытательных режимах

Рассмотрим подъемник с нижним машинным помещением(рис. 6).

Режим подъема неуравновешенного груза.

Груженая кабина внизу, подъем

(1.24, 1.25)

где Qу - масса уравновешивающих цепей; зб - кпд блока канатной системы.

Груженая кабина вверху, подъем

(1.26, 1.27)

Порожняя кабина внизу, спуск

(1.28, 1.29)

Порожняя кабина вверху, спуск

(1.30, 1.31)

Перегруженная на 10% кабина внизу, подъем; динамические испытания

(1.32)

Перегруженная на 10% кабина вверху, подъем; динамические испытания

(1.33)

Режим опускания неуравновешенного груза Груженая кабина внизу, спуск

(1.34)

Гружёная кабина вверху, спуск

(1.35)

Порожняя кабина внизу, подъем

(1.36)

Порожняя кабина вверху, подъем

(1.37)

Статические испытания подъемника, перегруженная на 100% кабина внизу

(1.38)

1.4.2 Расчет соотношения натяжения канатов, консольной и окружной нагрузки канатоведущего шкива (КВШ).

Соотношение натяжения канатов подвески кабины и противовеса определяется для 11 рабочих и испытательных режимов по формуле [10]

(1.39)

где Simax, Simin - наибольшее и наименьшее значение величины натяжения канатов подвески кабины и противовеса в i-ом режиме.

Ш1 = 33,5/24,7 = 1,36

Ш2 = 54,68/24,7 = 2,03

Ш3 = 25,4/21,4 = 1,19

Ш4 = 27,6/10,6 = 2,6

Ш5 = 34,5/24,7 = 1,4

Ш6 = 55,7/27 = 2,06

Ш7 = 27,8/25,4 = 1,09

Ш8 = 29,7/27,6 = 1,08

Ш9 = 24,7/23,2 = 1,06

Ш10 = 27/20,8 = 1,3

Ш11 = 42,3/24 = 1,76

Консольная нагрузка КВШ определяется для каждого из 11 режимов

Pki = Ski +Sпi (1.40)

где i = 1-11 - порядковый номер режима.

Рк1 = 33,5 + 24,7 = 58,2 кН

Рк2 = 54,7 + 27 = 81,7 кН

Рк3 = 21,4 + 25,4 = 46,8 кН

Рк4 = 10,6 + 27,6 = 38,2 кН

Рк5 = 34, + 24,7 = 59,2 кН

Рк6 = 55,7 + 27 = 82,7 кН

Рк7 = 27,8 + 25,4 = 53,2 кН

Рк8 = 29,7 + 27,6 = 57,3 кН

Рк9 = 23,2 + 24,7 = 47,9 кН

Рк10 = 20,8 + 27 = 47,8 кН

Рк11 = 42,3 + 24 = 66,3 кН

Окружная нагрузка КВШ определяется для 11 режимов:

в режиме подъема неуравновешенного груза

Pi = Smax - Smin + 0.02*Smax (1.40)

Р1 = 33,5 -24,7 +0,02*33,5 = 9,5 кН

Р2 = 54,7 -27 +0,02*54,7 = 28,8 кН

Р3 = 25,4 -21,4 +0,02* 25,4 = 4,5 кН

Р4 = 27,6 -10,6 +0,02*27,6 = 17,6 кН

Р5 = 34,5 -24,7 +0,02*34,5 = 10,5 кН

Р6 = 55,7 -27 +0,02*55,7 = 29,8 кН

в режиме опускания неуравновешенного груза

Pi = Smax - Smin - 0.02*Smax (1.41)

Р7 = 27,8 -25,4 - 0,02*27,8 = 1,8 кН

Р8 = 29,7 -27,6 - 0,02*29,7 = 1,5 кН

Р9 = 24,7 -23,2 - 0,02*24,7 = 1 кН

Р10 = 27 -20,8 - 0,02*27 = 5,57 кН

Р11 = 42,3 -24 - 0,02*42,3 = 17,5 кН

1.5 Выбор электродвигателя

Расчет необходимой мощности привода лебедки

(1.42)

где Pмакс~ максимальное значение величины окружной нагрузки КВШ в режиме подъема неуравновешенного груза (режимы с 1 по 4); зм=0,7ч-0,75 - КПД механизма лебедки.

По каталогу выбираем электродвигатель МТВ 412-6, со следующими параметрами [5.стр.47]:

N = 30кВт; n = 970 об/мин; Мmax = 850 Нм; J = 0,7 Нм2; ПВ 25%.

1.6 Расчет редуктора лебедки подъемника

В лебедках подъемников преимущественное распространение получили червячные передачи (рис. 3.3) в силу ряда очевидных преимуществ: возможность получения больших передаточных чисел в одной паре, плавность и бесшумность работы [10.стр.48].

Недостатком червячной передачи является сравнительно низкий КПД, повышенный износ в связи с большими скоростями скольжения в зацеплении, склонность к задирам и заеданию

контактирующих поверхностей.

Рис. 7. Схема червячной передачи редуктора

а) червячная передача; б) червяк цилиндрический; в) червяк глобоидный

В нашей стране до недавнего времени отдавалось предпочтение глобоидным передачам.

Глобоидные червячные передачи обладают повышенной нагрузочной способностью, так как в зацеплении с зубом червяка одновременно находится несколько зубьев, и линии контакта зубьев с червяком располагаются практически перпендикулярно вектору скорости скольжения, что способствует образованию непрерывной масляной пленки на трущихся поверхностях.

Благоприятные условия смазки способствуют устранению заедания в червячном зацеплении.

Увеличение площади контактной поверхности позволяет использовать более дешевые сорта бронзы и дает некоторую экономию цветных металлов. Именно это обстоятельство предопределило предпочтительное применение глобоидных передач в лебедках подъемников отечественного производства в послевоенный период. Наряду с очевидными достоинствами, глобоидные передачи имеют весьма существенные недостатки.

Значительно сложнее технология изготовления глобоидных передач. Практическое отсутствие оборудования для шлифовки глобоидного червяка исключило возможность его термической обработки, что в свою очередь, привело к снижению усталостной прочности, уменьшению КПД и повышенному износу зубьев колеса в связи с наличием существенных микронеровностей на поверхности червяка. Отсутствие аналитической теории и использование экспериментальных зависимостей существенно усложняет процесс проектирования.

Глобоидные передачи весьма критичны к точности сборки и регулировке осевого положения червяка и колеса.

Снижение точности сборки и регулировки глобоидной передачи влечет за собой резкое снижение КПД и может вызвать заклинивание червячного зацепления. В связи с этим, исключалась возможность применения пролетной схемы установки КВШ с выносной опорой. Доминирующим решением стала консольная установка КВШ и, связанное с этим, увеличение габаритов подшипников выходного вала редуктора.

К недостатку глобоидной передачи следует отнести и наличие небольших кинематических колебаний окружной скорости червячного колеса, которые могут служить одной из причин вибрации кабины.

В лебедках подъемников применяют три способа расположения червяка редуктора: нижнее горизонтальное, верхнее горизонтальное и вертикальное.

Утечка масла полностью устраняется в лебедках с верхним и вертикальным расположением червяка.

Лебедки с верхним расположением цилиндрического червяка успешно применяются в подъемниках зарубежного и отечественного производства. На рис.7 представлен фрагмент конструкции редуктора отечественного производства с верхним расположением червячного вала, который одновременно является валом ротора двигателя.

Применение системы мотор - червяк позволяет отказаться от использования соединительной муфты. При этом, снижается виброактивность редуктора, масса и габариты лебедки. Уменьшается трудоемкость ремонтных работ и технического обслуживания.

Недостатком редуктора с верхним расположением червяка является ухудшение условий смазки зацепления после длительного простоя подъемника.

Остаточная масляная пленка не гарантирует жидкостное трение в момент пуска двигателя.

Для компенсации этого недостатка и повышения несущей способности масляной пленки целесообразно увеличивать скорость скольжения контактирующих поверхностей червячного зацепления за счет применения двигателя с повышенной частотой вращения ротора.

Расчет червячных редукторов лебедок подъемников не имеет особой специфики за исключением необходимости учета значительной консольной нагрузки на выходной вал при консольной установке КВШ. Специфичен и характер нагрузок, определяемый назначением и режимом работы подъемника.

Выбор редуктора с глобоидным при консольной установке КВШ может производиться аналогичным образом и должен обеспечивать выполнение следующих необходимых условий:

Uр ? Uо; [М] ? Мэ; [р] ? рк; ПВр ? ПВл; Nр ? Nд, (1.43)

где Uр,Uо - табличное и расчетное значение передаточного числа редуктора; [М] Мэ - табличное значение допускаемого момента на тихоходном валу и величина расчетного эквивалентного момента, Нм; [р], рк - табличное значение допускаемой консольной нагрузки на тихоходном валу и расчетная консольная нагрузка, кН; ПВр, ПВл - табличное значение продолжительности включения редуктора и проектируемого подъемника; Nр, Nд, - расчетное значение мощности редуктора и двигателя лебедки, кВт.

Передаточное число редуктора определяется с учетом кинематической схемы подъемника по следующей формуле

(1.44)

где D - расчетная величина диаметра КВШ, м; nн - номинальное значение частоты вращения вала двигателя, об/мин; V - расчетное значение величины скорости кабины, м/с.

Расчет величины эквивалентного крутящего момента вала КВШ производится с учетом вероятностного характера изменения нагрузки

Мэ = Рmax * D/2 * Кэ * 10-3, Нм (1.45)

где Рmax - максимальная окружная нагрузка КВШ в режиме подъема неуравновешенного груза, кН; Кэ - коэффициент эквивалентности реальной диаграмме нагрузки.

Мэ = 28,8х0,56/2х0,8х10-3 = 0,006 Нм.

Для подъемников с противовесом Кэ принимается в диапазоне от 0,7 до 0,9 [10. стр.52].

Выбираем типоразмер редуктора:

Uр Uо; 65 ? 37,9;

[р] ? рк; 94 ? 82,7 кН;

ПВр ? ПВл; 25 ? 25 %;

Nр ? Nд, 33,5 ? 30 кВт.

Величина расчетной консольной нагрузки Рк определяется для режима, в котором окружная нагрузка КВШ принимает наибольшее значение Рmax.

Поверочный расчет редуктора, в случае необходимости, может производиться традиционными методами.

После выбора редуктора лебедки производится уточнение диаметра барабана (КВШ) по кинематическому условию, гарантирующему обеспечение номинальной скорости движения кабины с погрешностью не превышающей 15%.

, м, (1.46)

где Vр - рабочая скорость кабины, равная номинальной или отличающейся на 15 %, м/с; Uр - табличное значение передаточного числа редуктора лебедки; - номинальное значение частоты вращения вала двигателя, об/мин.

.

1.7 Расчет тормоза лебедки привода

Тормоз предназначен для замедления движения машины или механизма, полной остановки и надежной фиксации неподвижного состояния.

Тормоза лебедок подъемников должны удовлетворять следующим требованиям: высокая надежность и безопасность работы; наличие механизма ручного выключения тормоза с самовозвратом в исходное состояние; высокое быстродействие; низкая виброактивность и уровень шума; технологичность изготовления и малая трудоемкость технического обслуживания; обеспечение необходимой точности остановки кабины в подъемниках с нерегулируемым приводом.

В лебедках подъемников используются колодочные тормоза нормально-замкнутого типа с электромагнитной растормаживающей системой.

Правила ПУБЭЛ исключают возможность применения ленточных тормозов в связи с их недостаточной надежностью.

Роль тормоза лебедки подъемников зависит от типа привода.

В лебедках с нерегулируемым приводом тормоз используется для обеспечения необходимой точности остановки и надежного удержания кабины на уровне этажной площадки, тогда как в лебедках с регулируемым приводом - только для фиксации неподвижного состояния кабины.

Для наиболее распространенных конструкций колодочных тормозов лебедок подъемников характерно наличие независимых тормозных пружин каждой колодки, а в некоторых случаях, и независимых растормаживающих электромагнитов.

Тормозные накладки закрепляются на колодках посредством винтов, заклепок или приклеиванием термостойким клеем и обеспечивают угол обхвата шкива от 70° до 90°.

Материал накладок должен обеспечивать высокое и стабильное значение коэффициента трения в широком диапазоне температур, хорошую теплопроводность для исключения местного перегрева поверхности трения и высокую износостойкость.

Кинематические схемы колодочных тормозов весьма разнообразны (рис. 8). Они отличаются способом создания тормозного усилия и особенностями конструкции механизма растормаживания.

Лебедки с верхним горизонтальным расположением червяка оборудуются колодочными тормозами, изготовленными по схеме рис. 8.

Рис. 8. Схема колодочного тормоза подъемниковой лебедки с короткоходовым электромагнитом

Тормозное усилие в этих тормозах создается цилиндрическими пружинами, тогда как выключение тормоза осуществляется электромагнитами постоянного или переменного тока, получающими электропитание в момент включения двигателя лебедки.

Тормозные электромагниты различаются величиной хода подвижного сердечника (якоря) и подразделяются на короткоходовые и длинноходовые.

В конструкциях колодочных тормозов зарубежного и отечественного производства чаще применяются короткоходовые электромагниты постоянного тока, так как они меньше шумят и имеют лучшие тяговые характеристики (рис. 9.).

Недостатком электромагнитов постоянного тока является их электромагнитная инерция, связанная с большой индуктивностью катушки. Поэтому возникает возможность запуска двигателя под тормозом.

Для исключения такой возможности необходимо форсировать нарастание тока в катушке магнита в момент включения или обеспечить опережающее включение питания магнита.

Рис. 9. Тормоз с вертикальным расположением электромагнита постоянного тока

1 - шпилька; 2 - фасонная шайба; 3 - втулка опорная; 4 - рычаг; 5 - вилка; 6 - подставка; 7 - якорь; 8 - катушка магнита;

9 - шток; 10 - корпус магнита; 11 - пружина; 12 - двуплечий рычаг; 13 - винт регулировочный; 14 - рычаг; 15 - фиксатор колодки; 16 - колодка

Регулировка тормозного момента производится посредством ключа 5 путем вращения шпильки 6 и гаек 8, 9.

Ручное выключение тормоза производится не показанном на схеме рычагом.

Расчетная величина тормозного момента определяется на основании рассмотрения двух режимов работы лебедки: наиболее тяжелый эксплуатационный режим с максимальной окружной нагрузкой КВШ и режим статических испытаний.

Тормозной момент в расчетном эксплуатационном режиме

(1.47)

Тормозной момент в режиме статических испытаний

, (1.48)

где Рмах - максимальное значение величины окружного усилия КВШ в наиболее тяжелом эксплуатационном режиме, включая режим динамических испытаний, кН; Рис - окружное усилие КВШ в режиме статических испытаний, кН; ?п, ?о - прямой КПД при номинальных оборотах двигателя и обратный КПД при200 об/мин; D - расчетное значение величины диаметра КВШ, м; Uр - передаточное число редуктора; Ктэ, Ктис - коэффициент запаса тормозного момента для эксплуатационного режима и режима статических испытаний, соответственно (для пассажирского подъемника: Ктэ = 2, Ктис = 1,4 [10. стр.58]).

По наибольшей величине тормозного момента Мт и соответствующему каталогу выбирается тип колодочного тормоза:

ТКТ-300/200

Мт = 240Нм, ПВ = 25%, Dш = 300мм, дш = 0,5.

1.8 Расчетное обоснование геометрических характеристик ручья КВШ

Этот расчет выполняется на завершающем этапе тягового расчета подъемника при следующих исходных данных: форма профиля ручья КВШ и, соответствующее ей, рекомендуемое значение коэффициента запаса тяговой способности; d,D - расчетное значение диаметра каната и КВШ, м; S - максимальное значение величины натяжения ветви каната, кН; [p] - допускаемое значение величины контактного давления, МПа. Порядок расчетного обоснования геометрических характеристик ручья КВШ.

Обод шкива проверяется на допускаемое напряжение смятия в зоне контакта с рабочей поверхностью ручья по формуле

(1.49)

где d,D - расчетное значение диаметра каната и КВШ, м; S - максимальное значение величины натяжения ветви каната, кН; [p] - допускаемое значение величины контактного давления, Мпа; m - число канатов.

Для клинового ручья коэффициент давления может быть определен по формуле:

(1.50)

Угол д принимается из диапазона 35 - 40°[11. стр.77].

Для чугунного шкива допустимое напряжение смятия может быть определено по графику на рис. 3.14 (10. стр. 43).

7 ? 8,5 МПа.

В процессе эксплуатации канавки шкивов подвергаются усиленному износу. Для восстановления нормальной формы ручья производят периодическую проточку шкивов. Для удобства ремонта и замены обод шкива может быть съемным.

2. Расчет механизма подъема монтажного крана

2.1 Выбор каната

рис.10. схема запасовки монтажного каната

Определим максимальное статическое усилие каната . Вес номинального груза и крюковой подвески:

НкН. (2.1)

Максимальное статическое усилие в канате:

, (2.2)

где - количество ветвей каната набегающих на барабан, ;

- кратность полиспаста, ;

- к.п.д. всех направляющих блоков:

,

где - к.п.д. одного направляющего блока, ;

- количество направляющих блоков;

- к.п.д. полиспаста, ;

кН.

Выбор типоразмера каната

По условию области применения выбираем наиболее предпочтительный типоразмер каната ЛК-РО ((1+7+7/7+14)+1о.с., ГОСТ 7668-80) [12, т.2, с.243, таб. V.2.2.]

Определим разрывное усилие выбираемого каната:

, (2.3)

где - коэффициент запаса, определяемый по группе режима работы механизма 3М [12, т.2, с.250, таб.V.2.4.];

кН.

По разрывному усилию выбираем наиболее подходящий типоразмер каната 9,7-Г-В-О-Н-1764, ГОСТ 7668-80) [12, т.2, с.246, таб.V.2.3], имеющий параматры:

кН,

мм,

кг (масса одного погонного метра каната);

назначение каната - грузовое;

марка проволоки - высшая;

сочетание направлений свивки - одностороннее;

способ свивки - нераскручивающийся;

маркировочная группа - 1764.

Выполним проверку каната на прогиб в крюковой подвеске:

, (2.4)

где е - коэффициент, зависящий от типа машины и режима работы. Для стрелового крана и режима 3М е=16 [12, т.2, с.250, таб.V.2.4.];

мм,

2.2 Определение размеров барабана

При установке барабана на роликовых подшипниках [12, т.2, с.237, таб.V.1.69].

2.2.1 Диаметр барабана

Примем диаметр барабана из нормального ряда мм.

2.2.2 Длина барабана

Найдем длину барабана для одинарного полиспаста:

, (2.5)

где - канатоемкость барабана, м;

dК -.диаметр каната, мм;

Dб - диаметр барабана, мм;

m - число слоев навивки.

Определим канатоемкость барабана исходя из конструкции подъемника:

м

тогда,

мм

2.2.3 Толщина стенки барабана

Толщину стенки барабана определим по формуле:

, (2.6)

где S - максимальное натяжение каната, кН;

К1 - коэффициент, учитывающий число слоев навивки (при m = 3 К1 =1,8);

К2- коэффициент, учитывающий ослабление натяжения ранее уложенных витков вследствие сжатия барабана при навивании последующих витков (для чугунного барабана К2 = 0,8);

- допустимое напряжение (принимается с коэффициентом запаса равным 5 относительно предела текучести);

Так как механизм работает в легком режиме примем материал изготовления барабана - чугун СЧ 15-32.

Тогда , где при , т. е. МПа.

Толщина стенки барабана:

м = 16,5мм.

Список литературы

1. Правила устройства и безопасной эксплуатации строительных подъемников ПБ 10 - 518 - 02. Сер. 10. Вып. 23 / Коллектив. авт. - М.: Государственное унитарное предприятие «Научно-технический центр по безопасности в промышленности Госгорнтехнадзора России», 2003. - 104 с.

2. Федорова З.М. и др. Подъемники. Киев: Высшая школа. 1976. - 294с.

3. Галиченко А.Н., Гехт А.Х. Строительные грузовые и грузопассажирские подъемники.- М.: - Высшая школа. 1989. - 255 с.

4. Павлов Н.Г. Лифты и подъемники. М.; - Л.: Машиностроение. - 1965. - 201 с.

5. Вайнсон А.А. Подъемно-транспортные машины строительной промышленности: Атлас. - М.: Машиностроение. - 1976. - 151 с.

6. Желтонога А.И. и др Краны и подъемники: Атлас Ч. II. Минск: Высшая школа, 94 с.

7. Поляков В.И. и др. Машины для монтажных работ и вертикального транспорта. - М.: Стройиздат, 1981. - 350 с.

8. Чернышов Р.О. Подъемники и легкие краны в строительстве. - М.: Стройиэдат, 1975. - 286 с.

9. Федосеев В.Н., Гончаров Г.И. Безопасная эксплуатация лифтов. Справочное пособие. - М.: Стройиздат. 1987. - 253 с.

10. Лифты: Учебник для вузов/ под общей ред. Д.П. Волкова - М.: изд-во АСВ, 1999. - 480 с.

11. Баранов А.П., Голутвин В.А. Подъемники. - Тула: изд-во ТулГУ, 2004. - 150 с.

12. Справочник по кранам, под ред. М.М.Гохберга. Л.: Машиностроение, 1988. 535 с.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.