реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Коррозия металлов

В зависимости от защитной способности наружных покрытий в конкретных условиях эксплуатации в соответствии РД 153-39.4-091 в России различают следующие типы: нормальный, усиленный и весьма усиленный; в зависимости от используемых материалов: полимерные (экструдированные из расплава, сплавляемые на трубах из порошков, из липких изоляционных лент и др.), мастичные (битумные и каменноугольные), стеклоэмалевые и др.

В России на магистральных стальных трубопроводах, групповых и межхозяйственных. водопроводах и ответвлениях от них приме-няются два типа защитных покрытий: нормальные и усиленные (по-лимерные, битумно-резиновые, битумно-полимерные и др.).

На стальных трубопроводах, прокладываемых непосредственно в земле в пределах территории городов, населенных пунктов и промышленных предприятий, применяются защитные покрытия весьма усиленного типа (битумно-полимерные, битумно-минеральные, каменноугольные, полимерные, этиленовые, а также покрытия на основе битумно-резиновых мастик), изготовляемые на специализированных заводах.

3.2 Экструдированные и напыленные полиэтиленовые покрытия

Требования к полиэтиленовым покрытиям. Применение полиэтилена для защитных покрытий трубопроводов обусловлено его высокой механической стойкостью к ударам, повышенной прочностью по сравнению с битумом при низких температурах, малой адсорбцией воды, незначительной диффузией водяных паров, высоким диэлектрическим сопротивлением и малым его изменением при эксплуатации покрытий. Однако для полиэтилена характерна сравнительно высокая степень кислородной и водородной диффузии. Полиэтилен вследствие особой молекулярной структуры обладает свойствами неполярности и имеет невысокую адгезию к стали. При этом коэффициент линейного расширения полиэтилена в 5,83 раза больше, чем стали. Полиэтиленовые покрытия должны наноситься сравнительно толстым слоем, не менее 0,8 мм, а с учетом механических испытаний в условиях транспортирования и укладки -- не менее 1,8 мм.(ГОСТ 9.602-89)

Для получения полиэтиленового покрытия в заводских условиях используют различные композиции как гранулированного, так и порошкового полиэтилена. Гранулированный полиэтилен наносят на трубы методом экструзии, а порошковый -- напылением. Применяют также и комбинированный способ, при котором нижний слой покрытия, прилегающий к металлу, наносят напылением порошкообразного полиэтилена или эпоксида, а верхний -- экструзией полиэтилена.

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИЙ СЭВИЛЕНА И НАПОЛНЕННОГО ПОЛИЭТИЛЕНА

Показатель

По ТУ 6-05-1635-81

По ТУ 6-05-1409-79

11104-030

11306-075

168-29Б

Плотность г/см3

0,9250,005

0,9350,005

0,9230,004

Показатель текучести расплава, г/10 мин

1…5

5…10

3,2…7,2

Разброс показателя текучести расплава в пределах партии, %

10

10

5

Массовая доля Винилацетата, %

5…7

10…14

-

Содержание наполнителя, %

-

-

202

Прочность при разрыве, МПа, не менее

11,3

9,8

9

Относительное удлинение при разрыве, %, не менее

600

60

450

Число включений, не более

15

15

20

Стойкость к термоокислительному старению, ч, не менее

8

8

8

3.3 Контроль качества защитных покрытий

Общие требования. Контроль качества защитных покрытий стальных трубопроводов должен осуществляться на всех этапах изоляционных и строительных работ, а также в условиях эксплуатации. Качество очистки, грунтовки и изоляции труб, выполняемых в заводских условиях и на производственных базах строительно-монтажных организаций, проверяет и принимает отдел технического контроля предприятия, Проверку качества изоляционных работ на трассе на основании СниП 42-01-2002 должны осуществлять инженерно-технические работники строительно-монтажной организации, выполняющей изоляционные работы, а также технический надзор заказчика.

Качество исходных материалов, используемых для изоляции трубопроводов, проверяют, сопоставляя данные, приведенные в технических паспортах и сертификатах, с результатами лабораторных анализов, а также контролем соответствия их свойств требованиям ТУ, и ГОСТов на эти материалы. При отсутствии технических паспортов или сертификатов на изоляционные материалы возможность их применения для изоляции труб должна определить и выдать письменное заключение по результатам испытаний лаборатория строительно-монтажной организации

Качество очистки поверхности. Качество очистки внешней поверхности труб проверяют визуально и сравнением очищенной поверхности с утвержденными для каждого вида изоляционного покрытия эталонами. Для инструментального контроля качества очистки могут применяться приборы типа УКСО конструкции ВНИИСТ

Прибор УКСО-2 устанавливают на очистной или комбинированной машине и осуществляют контроль непосредственно в процессе очистки трубопроводов. Информация о степени очистки выводится на стрелочный индикатор со шкалой 0...100 %, Прибор имеет световую и звуковую сигнализацию предельно допустимых значений степени очистки, а при подключении регистрирующего устройства обеспечивает автоматическую запись информации о степени очистки. В основе метода лежит принцип измерения электрической проводимости поверхностного слоя очищаемой поверхности трубопровода. Измерительным электродом является контактный ролик, прижимаемый к контролируемой поверхности с помощью калибровочной пружины. Поверхность трубопровода, очищенная от грязи, окалины, обладает хорошей электропроводимостью, в то время как любые посторонние включения на поверхности металла ухудшают проводимость между поверхностью трубопровода и контактным роликом.

Качество нанесенного на трубы защитного покрытия определяют внешним осмотром, измерением толщины, проверкой сплошности и прилипаемости (адгезии) к металлу, прочности при ударе, переходного электросопротивления.

Для полиэтиленовых и эпоксидных покрытий заводского нанесения показатели качества подразделяют на сдаточные и гарантированные. Сдаточные показатели определяют на каждой партии изолированных труб и вносят в сертификаты. Гарантируемые показатели контролируют периодически в цеховой лаборатории или по требованиям заказчика. Сдаточные испытания наружного полиэтиленового и эпоксидного покрытий включают внешний осмотр изолированной поверхности, измерение толщины, проверку диэлектрической сплошности, испытание ударной прочности и адгезии к металлу в исходном состоянии изоляции при температуре (20±5)°С.

К гарантируемым показателям относятся: стойкость к катодному отслаиванию, ударная прочность и физико-механические характеристики при отрицательных и повышенных положительных температурах, переходное электросопротивление после термостарения покрытий и т. д. в соответствии с имеющейся ведомственной нормативно-технической документацией.

Внешний осмотр защитного покрытия проводят непрерывно в процессе наложения каждого слоя изоляции по всей длине трубы и после окончания изоляционных работ. При этом фиксируют пропуски, трещины, сгустки, вздутия, пузыри, мелкие отверстия, отслоения, бугры, впадины. При нанесении липких лент, армирующего материала и защитных оберток контролируют натяжение полотнища, обеспечивающее плотное прилегание рулонного материала к поверх-ности трубы, число слоев, а также ширину нахлеста спиральных витков, которая должна быть не менее 3 см, а на концах ленты или обертки 10-15 см.

ХАРАКТЕРИСТИКИ ПОЛИМЕРНЫХ ЛИПКИХ ЛЕНТ

Показатель

Материал основы

поливинилхлорид

полиэтилен

Кремнийорганическая резина

ПИЛ (летняя) (ТУ 6-19-103-78)

ПВХ-Л (ТУ 102-320-86)

ПВХ-БК (ТУ 102-166-82)

ЛДП (ТУ 102-376-84)

ЛЭТСАР-ЛПТ (марка Б) (ТУ 38-103412-78)

Ширина ленты; мм

41010; 45010; 50010

9010; 15010; 45010; 48010; 50010

45010; 48010; 50010

45010; 50010

25010; 45010

Длина полотна ленты в рулоне не менее, м

1255; 1805

1255; 1805

1255; 1805

1255

100,5

Толщина ленты, мм, не менее

0,40,05

0,40,05

0,40,05

0,60,15

0,60,1

Толщина клеевого слоя, мм, не менее

0,1

0,1

0,1

0,2

-

Прочность при разрыве, МПа, не менее

13

20

20

13

15

Относительное удлинение при разрыве, %, не менее

190

200

200

300

500

Удельное объемное электрическое сопротивление при 20 С, Ом*см, не менее

1*1011

1*1011

1*1011

1*1012

1*1012

Липкость, с, не менее

20

20

-

-

-

Адгезия к загрунтованной поверхности стали при 20 С, Н/см, не менее

1,5

1,5

1,5

15

5

Температура хрупкости, С, не выше

- 30

- 40

- 50

- 50

- 50

Температурный режим эксплуатации, С

От - 30 до + 40

От - 40 до + 30

От - 45 до + 40

От - 60 до + 60

От - 50 до + 120

Температура нанесения (нижний предел), С

До + 5

До - 35

До - 35

До - 40

До - 40

Цвет

Синий, черный

Черный, коричневый, синий

Натуральный

Серый, черный

Красный, коричневый

ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ БИТУМОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ МАСТИК ДЛЯ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ

Показатель

БНИ - IV-3

БНИ - IV

БНИ - V

БН - 70/30

БН - 90/10

Методика испытания по ГОСТ

Температура размягчения, С, не менее

65

75

90

70

90

11506 - 73*

Глубина проникания иглы при 25 С, 1*10-1 мм, не менее

30…50

25…40

20

21…40

5…20

11501 - 78*

Растяжимость при 25 С, см, не менее

4

3

2

3

1

11505 - 75*

Содержание водорастворимых соединителей, %, не более

0,2

0,2

0,2

0,3

0,3

2477 - 65*

Изменение массы после нагрева, %, не более

0,5

0,5

0,5

1

1

18180 - 72*

Температура вспышки, С, не ниже

230

230

230

230

240

4333 - 87*

Растворимость в бензоле или хлороформе, %, не менее

Не нормируется

99

99

20739 - 75*

Содержание парафина, %, не более

4

-

-

-

-

17789 - 72*

Водонасыщенность за 24 ч, %, не более

0,2

0,2

0,2

-

-

9812 - 74*

Содержание воды

следы

2477 - 65*

4. КАТОДНАЯ ЗАЩИТА

4.1 Принципиальная схема действия катодной защиты

Катодная поляризация осуществляется с помощью наложенного тока от внешнего источника энергии, обычно выпрямителя, который преобразует переменный ток промышленной частоты в постоянный. Защищаемая конструкция соединяется с отрицательным полюсом внешнего источника выпрямленного тока, так что она действует в качестве катода. Второй электрод (анодное заземление) соединяется с положительным полюсом источника тока, так что он действует в качестве анода. Принципиальная схема действия катодной защиты показана на рисунке.

Катодная защита возможна только в том случае, когда защищаемая конструкция и анодное заземление находятся в электронном и электролитическом контакте: первое достигается с помощью металлических проводников, а второе -- благодаря наличию электролитической среды (грунта), в которую погружаются защищаемая конструкция и анодное заземление. Катодная защита регулируется путем поддержания необходимого защитного потенциала, который измеряется между конструкцией (или датчиком поляризационного потенциала) и ЭС. Обычно ЭС служит МЭС длительного действия, находящийся постоянно в электролитической среде (грунте). Потенциал между ЭС и защищаемой конструкцией, измеряемый высокоомным вольтметром, включает в себя кроме поляризационной составляющей омическое падение напряжения 1R, обусловленное прохождение катодного тока i через эффективное сопротивление R между электродом сравнения и защищаемой конструкцией. Только поляризация на поверхности защищаемой конструкции обусловливает эффект катодной защиты. Поэтому критериями защищенности являются минимальный и максимальный защитные поляризационные потенциалы. Таким образом, для точного регулирования поляриза-ционного потенциала защищаемой конструкции по отношению к электроду сравнения из измеренной разности потенциалов должна быть иллюминирована (исключена) величина омической составляющей. Это достигается применением специальной схемы измерения поляризационного потенциала.

Катодная поляризация неизолированной металлической конструкции до величины минимального защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (--0,85 В) по отношению к медно-сульфатному электроду сравнения

Схема катодной защиты : 1 -- источник постоянного напряжения; 2 -- трубопровод: 3 -- анодное заземление; 4 --металлический проводник: 5 -- грунт; б -- медносульфатный электрод сравнения с датчиком поляризационного потенциала; 7 -- высокоомный вольтметр

Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали хорошим покрытием в почве требуется всего 0,01...0,2 мА/м2. По мере разрушения покрытия и оголения металла катодный ток должен возрастать для обеспечения защиты сооружения. Качество наружного покрытия на защищаемой поверхности определяет интегральную площадь неизолированного металла, контактирующего с электролитом, и также ток, который будет протекать через покрытие. Ток, необходимый для катодной защиты подземных металлических трубопроводов, почти полностью зависит от качества покрытия.

4.2 Расчет катодной защиты, подбор катодной станции

задание: Определить параметры катодной защиты подземного газопровода на территории квартала площадью 10 га

исходные данные:

На территории района, требующего защиты расположены газопроводы низкого и высокого давления следующих диаметров и длин:

D 200 мм - 732 м;

D150 мм - 624 м;

D 100 мм - 323 м;

D 89 мм - 70 м.

Коррозийная агрессивность грунта на территории защищаемого района от 15 до 50 Ом*м. Принимаем среднее значение

Решение:

1. Определяем площадь поверхности газопроводов:

2. Т.к. рассчитываем только защиту газопроводов то удельный вес поверхности газопровода будет равна 100%

3. Определяем плотность поверхности газопровода, приходящаяся на единицу поверхности территории

4. Определяем среднюю плотность тока необходимого для защиты газопроводов

5. Определяем значение защитного тока, который необходим для обеспечения катодной поляризации подземного газопровода расположенного в данном районе

6. Определяем удельную плотность

7. Рассчитываем зону действия катодной станции

Полученный радиус действия катодной станции охватывает заданную территорию.

8. По таблице для тока и выбираем анодное заземление из железокремнистых электродов расположенных вертикально, тип И d=100мм; L=1,525м; n=6 с сопротивлением растеканию RА.З =0.993Ом.

9. Рассчитываем сопротивление дренажного кабеля.

Для кабеля АВРБ-3*16 длинной 100м сопротивление RКАБ. =0.0646 Ом*м

С учетом 30% запаса на развитие сети выбираем катодные станции типа ПКЗ-АР-М-2-у1(2) с параметрами U=48В; I=40А

5. БИОКОРРОЗИЯ И СРЕДСТВА ЗАЩИТЫ ОТ НЕЁ

5.1 Биокоррозия

БИОКОРРОЗИЯ (от греческого bios - жизнь и позднелатинского corrosio - разъедание), разрушение конструкционных материалов и противокоррозионных защитных покрытий под действием присутствующих в среде микроорганизмов (бактерий, грибов, водорослей, дрожжей). Первые сведения об участии микроорганизмов в коррозии материалов появились в конце 19 в. Освоение воздушного и водного пространств, недр Земли сопровождается неизбежным распространением микроорганизмов и увеличением масштабов биокоррозии. Заметный ущерб наносит биокоррозия в нефте- и газодобывающей промышленности (около 70% всех коррозионных разрушений), трубопроводному транспорту, морскому флоту, средствам связи и водоснабжения.

Общая теория биокоррозии отсутствует. Полагают, что в процессе жизнедеятельности микроорганизмов образуются продукты обмена веществ, повышающие коррозионную активность среды (минеральные и органические кислоты, щелочи, пероксиды, H2S и др.). В частности, быстрый выход из строя нефте- и газопроводов обусловлен деятельностью сульфатвосстанавливающих бактерий, повышающих агрессивность грунта и грунтовых вод в результате продуцирования H2S. Нек-рые виды тионовых бактерий вырабатывают H2SO4, понижая рН почвы и грунта до ~ 0,5. Биокоррозия подземных сооружений обусловлена в основном жизнедеятельностью сульфатвосстанавливающих, сероокисляющих и железоокисляющих бактерий, наличие которых устанавливают бактериологическими исследованиями проб грунта. Сульфатвосстанавливающие бактерии присутствуют во всех грунтах, но с заметной скоростью биокоррозия протекает только тогда, когда воды (или грунты) содержат 105-106 жизнеспособных бактерий в 1 мл (или в 1 г). Биокоррозия полимерных материалов связана с вырабатываемыми микроорганизмами ферментами, резко ускоряющими деструкцию макромолекул.

5.2 Средства защиты от биокоррозии

Главное средство борьбы с биокоррозией - обработка естественных и технологических сред бактерицидными препаратами (хлором и его соединениями, формалином и др.). Однако такая обработка не всегда возможна из экономических и санитарных соображений. Поэтому перспективно введение в состав конструкционных материалов и защитных покрытий веществ, угнетающих или уничтожающих микрофлору, а также электрохимическая защита.

Список используемой литературы

1. К.Г. Кязимов «Эксплуатация и ремонт подземных газопроводов» М: Стройиздат, 1987г. 337с.

2. И.В. Стрижевский, А.Д. Белоголовский, и др. «Защита подземных металлических сооружений от коррозии» М.: Стройиздат, 1990г. 303с.

3. Н.Л. Стаскевич, Г.Н. Северинец, Д.Я. Викдорчик «Справочник по газоснабжению и использованию газа» Л.: «Недра» 1990г. 762с.

4. РД 153-39.4-091-01«Инструкция по защите городских подземных трубопроводов от коррозии» М.: 4-й филиал Воениздата 2002г. 202с.

5. Сборник нормативный документов «Защита подземных трубопроводов от коррозии» Л.: «Недра» 1991г. 220с.

6. СП 42-101-2003 «Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб» ЗАО «Полимергаз» М.: 2003

7. СниП 42-01-2002 «Газораспределительные системы» Госстрой М: 2003

8. Стандарт отрасли ОСТ 153-39.3-051-2003 «Техническая эксплуатация газораспределительных систем» ООО «Три А» 2003 г. 140 с.

9. ПБ 12-529-03, М. ГУП НТЦ «Промышленная безопасность» 2003.-200с.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.