реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Кінематичний аналіз плоских важільних, кулачкових і зубчастих механізмів

Кінематичний аналіз плоских важільних, кулачкових і зубчастих механізмів

Курсова робота

"Кінематичний аналіз плоских важільних, важільних, кулачкових і зубчастих механізмів"

Вступ

Ключові слова: механізм; машина; структурна група; кінематична пара; ланка; план швидкостей; план прискорень; сила.

Ціль курсового проекту: придбання практичних навичок по кінематичному аналізу й синтезу плоских важільних, важільних, кулачкових і зубчастих механізмів.

Методи проведення досліджень: аналітичний, графічний і графоаналітичний.

У даному проекті визначені структурні кінематичні й динамічні характеристики важільного механізму, спроектовані кулачковий і зубчастий механізми по заданих умовах.

1. Структурний аналіз механізму

Число ступенів волі механізму визначаємо по формулі П.Л. Чебишева.

де n - число рухливих ланок механізму,

p5 - число кінематичних пар п'ятого класу,

p4 - число Кінематичних пар четвертого класу.

У досліджуваному механізмі n=5, p5=7, p4=0, тобто

Отже, досліджуваний механізм має одна початкова ланка, і все ланки роблять цілком певні рухи.

Визначаємо клас механізму. Клас механізму визначається вищим класом групи Ассура, що входить до складу механізму. Визначення груп починаємо із самої вилученої від початкової ланки (кривошипа). Відокремлюємо гр. А. другого класу другого виду з ланками 2 і 3.

A

2

Потім відокремлюємо групу другого класу другого виду з ланками 4 і 5.

У результаті розподілу залишається механізм першого класу, до складу якого входить початкова ланка 1 і стійка 0.

A

O 1

Формула будови механізму має вигляд

I (0; 1) II (2; 3)

II (4; 5)

Таким чином, даний механізм ставиться до II класу.

2. Кінематичне дослідження механізму

Побудова плану положень механізму

План положень механізму є основою для побудови кінематичних діаграм лінійного переміщення повзуну, або кутового переміщення вихідної ланки. Побудова плану положень механізму виконується в масштабі l.

; ;

; .

Вибираємо l м/мм. У цьому масштабному коефіцієнті робиться креслення кінематична схема механізму. На траєкторії крапки В повзуна 3 знаходимо її крайні положення. Крапки В0 і В6 будуть крайніми положеннями повзуну 3. За нульове положення механізму приймаємо крайнє ліве положення, а обертання кривошипа - за годинниковою стрілкою. Починаючи від нульового положення кривошипа ділимо траєкторію крапки A на 12 рівних частин і методом зарубок знаходимо всі інші положення ланок механізму. Для кожного положення механізму знаходимо положення центрів мас S2 і S4, з'єднавши послідовно крапки S у всіх положеннях ланок плавної кривої, одержимо шатунні криві.

Побудова планів швидкостей

Визначення швидкостей, зазначених на кінематичній схемі крапок ланок механізму робимо методом планів у послідовності, певною формулою будови механізму. Спочатку визначаємо лінійну швидкість провідних крапок А и С.

VA= 1 lOA= lOA

VС= 1 lOC= lOС

де 1 - кутова швидкість початкової ланки ОА;

n1 - частота обертання початкової ланки ОА;

lOA - довжина ланки ОА, м;

1=

VA= VС =

Швидкості крапок А и B буде однаковими для всіх положень механізму. Масштабний коефіцієнт плану швидкостей вибираємо стандартним. У розглянутому прикладі

Вектор перпендикулярний кривошипу ОА й спрямований убік його обертання.

Відповідно до першого рівняння, через крапку а на плані швидкостей проводимо пряму, перпендикулярну АВ, а відповідно до другого - через крапку р проводимо пряму, паралельну напрямної X-X. Перетинання цих прямих визначає положення крапки c, що зображує кінець вектора VВ і V В. Із плану швидкостей маємо

VВ= VВВo= (pb).= 33,5 ? 0,4 = 13,4 м/c

V В= (ab).= 45 ? 0,4 = 18 м/с

Швидкість центра мас S2 ланки 2 визначимо по теоремі подоби:

,

звідки

Отже,

Швидкості крапок, що належать групі Ассура з ланками 2,3 визначені.

Переходимо до побудови плану швидкостей для групи 4,5. Розглянемо рух крапки D щодо крапки З, а потім стосовно крапки D0, що належить нерухливої напрямної (). Запишемо два векторних рівняння, які вирішимо графічно:

Відповідно до першого рівняння через крапку із плану швидкостей проводимо пряму, перпендикулярну до DС, а для рішення другого рівняння необхідно через полюс p провести пряму, паралельну напрямної X-X. На перетинанні цих прямих і буде перебувати шукана крапка d.

Величини швидкостей визначимо, множачи довжини векторів на плані швидкостей на масштабний коефіцієнт

Швидкість центра мас S4 ланки 4 визначимо по теоремі подоби

,

звідки

Отже,

У зазначеній послідовності виробляється побудова планів швидкостей для всіх 12-ти положень механізму. Причому, вектори, що виходять із полюса P, зображують абсолютні швидкості, а відрізки з'єднуючі кінці цих векторів - відносні швидкості крапок.

Обчислені в такий спосіб величини швидкостей зводимо в таблицю 2.1.

Визначимо кутові швидкості ланок

Напрямок кутової швидкості ланки AВ визначиться, якщо перенести вектор швидкості крапки B на схемі механізму й установити напрямок обертання ланки AB щодо крапки А під дією цього вектора. У розглянутому випадку в положенні 1 механізму кутова швидкість спрямована проти годинникової стрілки.

Напрямок кутової швидкості шатуна 4 визначає вектор , якщо його перенести із плану швидкостей у крапку D на схемі механізму. У положенні 1 кутова швидкість спрямована проти годинникової стрілки.

Таблиця 2.1

VB

VS2

VD

VS4

VВА

VDС

?1

?2

?4

м/з

с-1

0

0

20,8

0

14

20,8

20,8

20,8

20,8

0

188,4

60,03

0

1

0

20,8

13,4

16,6

20,8

21,2

20,4

18

10,8

188,4

51,95

31,17

2

0

20,8

21,2

20,4

20,8

13,4

16,6

10,8

18

188,4

31,17

51,95

3

0

20,8

20,8

20,8

20,8

0

0

0

20,8

188,4

0

60,03

4

0

20,8

15

18,2

20,8

13,4

16,6

10,8

18

188,4

31,17

51,95

5

0

20,8

7,6

15,6

20,8

21,2

20,4

18

10,8

188,4

51,95

31,17

6

0

20,8

0

14

20,8

20,8

20,8

20,8

0

188,4

60,03

0

7

0

20,8

7,6

15,6

20,8

15

18,4

18

10,8

188,4

51,95

31,17

8

0

20,8

15

18,2

20,8

7,6

14,8

10,8

18

188,4

31,17

51,95

9

0

20,8

20,8

20,8

20,8

0

0

0

20,8

188,4

0

60,03

10

0

20,8

21,2

20,4

20,8

7,6

14,8

10,8

18

188,4

31,17

51,95

11

0

20,8

13,4

16,6

20,8

15

18,4

18

10,8

188,4

51,95

31,17

2.3 Побудова планів прискорень

Послідовність побудови плану прискорень також визначається формулою будови механізму. Спочатку визначимо прискорення провідної крапки A. При початкової ланки ОА крапка А має тільки нормальне прискорення:

Прискорення крапки А аА на плані прискорень зобразимо вектором , що спрямований по ланці ОА від крапки А к крапці О. Масштабний коефіцієнт плану прискорень вибираємо стандартним.

Вектор і є план прискорень початкової ланки ОА (кривошипа).

А тепер побудуємо план прискорень групи 2, 3. Тут відомі прискорення крапок А и В. Запишемо два векторних рівняння, розглядаючи рух крапки B відносно А и стосовно крапки B0:

де - нормальне прискорення у відносному русі крапки B стосовно крапки А;

- тангенціальне прискорення в тім же русі;

- прискорення крапки B0 напрямної X-X;

- прискорення крапки B повзуну щодо крапки B0 приналежний.

Вектор нормального прискорення спрямований паралельно АB від крапки B до крапки А. Величина цього прискорення

На плані прискорень через крапку а проводимо пряму, паралельну ланці АB і відкладаємо на ній у напрямку від крапки B до крапки А вектор , що представляє в масштабі прискорення

Через крапку n1 проводимо пряму в напрямку вектора тангенціального прискорення перпендикулярно до ланки АB.

У відповідності із другим рівнянням через полюс і співпадаючу з ним крапку B0 (прискорення для нерухливої напрямної) проводимо пряму в напрямку прискорення паралельно напрямної X-X. Крапка b перетинання цих прямих визначає кінець вектора абсолютного прискорення крапки B.

Величина тангенціального прискорення

Прискорення центра мас S2 ланки АB визначається за допомогою теореми подоби. Із пропорції

визначаємо положення крапки S2 на плані прискорень

Отже, величина прискорення крапки S2

А зараз визначимо прискорення крапок ланок групи, утвореної ланками 4 і 5. Розглянемо рух крапки D щодо крапки C, а потім стосовно крапки D0.

Прискорення крапки D визначиться графічним рішенням наступних двох векторних рівнянь:

У першому рівнянні нормальне прискорення спрямоване по шатуні DC (від крапки D до крапки C). Величина прискорення

Тангенціальне прискорення перпендикулярно до ланки DC, а величина його визначається побудовою плану прискорень.

Прискорення , а прискорення крапки D повзуну щодо крапки D0 напрямної визначиться побудовою плану прискорень.

Відповідно до першого рівняння на плані прискорень через крапку b проводимо пряму, паралельну ланці DC, і відкладаємо на ній у напрямку від крапки D до крапки C вектор , що представляє в масштабі прискорення

Через крапку n2 проводимо пряму в напрямку вектора тангенціального прискорення перпендикулярно до ланки DC. Потім через полюс і співпадаючу з ним крапку D0 проводимо пряму в напрямку прискорення паралельно напрямної X-X. Крапка d перетинання цих прямих визначає кінець вектора повного прискорення крапки D

Величина тангенціального прискорення

Прискорення центра мас S4 ланки CD визначається із пропорції

звідки

Отже, величина прискорення крапки S4

Визначимо величини кутових прискорень ланок:

Напрямок кутового прискорення 4 шатуна 4 визначить вектор , перенесений у крапку D на схемі механізму. Ланка буде обертатися по годинникової стрілки.

У такій же послідовності виробляється побудова плану прискорень для другого заданого положення механізму.

Таблиця 2.2

2

4

м/з2

с-2

0

3904,4

5175

0

1248,6

3904,4

4837,5

4125

0

1350

2625

0

11904,76

2

3904,4

1350

3412,5

336,62

3904,4

2850

1875

935,1

3975

3825

9848,5

5411,3

Побудова кінематичних діаграм для крапки В

а). Діаграма переміщення

На осі абсцис відкладаємо відрізок l, що зображує час одного оберту кривошипа, ділимо його на 12 рівних частин і у відповідних крапках відкладаємо переміщення крапки У від початку відліку із плану положень механізму.

Масштаб по осі ординат µs= µl =0,002 м/мм

Масштаб по осі абсцис

б). Діаграма швидкостей

Діаграма швидкості крапки В побудована по даним планів швидкостей. Масштаб по осі ординат прийнятий рівним масштабу планів швидкостей .

в). Діаграма прискорення

Діаграма прискорення побудована графічним диференціюванням (Методом хорд) діаграми швидкості.

Масштаб по осі ординат

г). Точність побудови діаграми прискорення

Зрівняємо величини прискорення крапки В, отриманих за допомогою графічного диференціювання діаграми швидкостей і методом планів.

Для положення механізму 2 з діаграми прискорення маємо

а із плану прискорень

Розбіжність значень прискорень, отриманих двома методами

3. Кінетостатичне дослідження механізму двигуна. Дослідження руху механізму

3.1 Визначення сил і моментів сил, що діють на ланки механізму

Будуємо кінематичну схему й план положень механізму в масштабі , план швидкостей у масштабі , план прискорень у масштабі й індикаторній діаграмі компресора.

По індикаторній діаграмі відповідно до розмітки ходу повзунів У и D визначаємо питомі тиски на поршень для кожного з положень механізму. Для цього будуємо індикаторні діаграми для кожного повзуну, помістивши вісь S діаграм паралельно осі його руху. Проводячи з кожної крапки положення повзуну прямі, паралельні осі P, одержимо на діаграмі розмітку положень крапок D і В. При цьому необхідно врахувати, що порядок нумерацій положень на діаграмі повинен відповідати напрямку робочий і холостий ходи повзуну.

Масштаб індикаторної діаграми по осі P:

де - заданий максимальний питомий тиск на поршень, рівне 10 МПа;

h - прийнята висота індикаторної діаграми (50 мм).

Сила тиску газу на поршень

де P - питомий тиск газу на поршень у Па (1Па= 1Н/м2);

діаметр поршня в м.

Для розрахункового положення (2) механізму:

Сили ваги ланок прикладені до їхніх центрів ваги. Їхньої величини визначаємо по формулі:

(Н),

де m - маса ланки в кг.

Сили ваги ланок 2 і 4:

Сили ваги ланок 3 і 5:

Сили інерції ланок визначаємо по формулі:

де as - прискорення центра мас ланки в м/с2.

Напрямок сили інерції протилежно напрямку вектора ().

Сила інерції ланки 1 дорівнює нулю, тому що центр мас ланки лежить на осі обертання і його прискорення дорівнює нулю.

Сила інерції ланки 2

Сила інерції ланки 3

Сила інерції ланки 4

Сила інерції ланки 5

Моменти сил інерций (інерційні моменти) ланок визначаємо по формулі:

Де IS - момент інерції маси ланки щодо осі, що проходить через центр мас перпендикулярно до площини руху (кгм2);

- кутове прискорення ланки (радий/з2).

Напрямок моменту сил інерції протилежно кутовому прискоренню ланки .

Момент сил інерції ланки 1 дорівнює нулю, тому що його кутове прискорення дорівнює нулю (рівномірний обертовий рух при ).

Момент сил інерції ланки 2

Момент сил інерції ланки 4

Визначення реакцій у кінематичних парах починаємо із групи, що складається з ланок 4 і 5.

3.2 Силовий розрахунок групи Ассура, що складає з ланок 4 і 5

Групу з ланок 4 і 5 вичерчуємо окремо в масштабі довжин і у відповідних крапках прикладаємо сили ваги й сили інерції ланок, а до ланки 4 і момент сил інерції . Відкинуті зв'язки заміняються реакціями й . Під дією зовнішніх сил, сил інерції й реакцій група буде перебувати в рівновазі.

Становимо умову рівноваги групи, дорівнюючи нулю суму всіх сил, що діють на групу

.

Невідомим тут є реакція .

Для визначення реакції будуємо план сил у масштабі .

Із крапки a паралельно силі відкладається відрізок

з кінця вектора аb у напрямку сили відкладаємо відрізок bc

з кінця вектора bc у напрямку сили відкладаємо вектор cd

з кінця вектора сd у напрямку сили інерції відкладаємо вектор de

з кінця вектора de у напрямку сили відкладаємо відрізок ef

з кінця вектора ef у напрямку сили відкладаємо відрізок fg

З'єднавши крапку g із крапкою а на плані сил, одержимо вектор , що зображує собою шукану реакцію , величина якої

.

Реакція в шарнірі D визначається вектором cg плану сил. Величина реакції

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.