реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Автоматизация доменного процесса

Применим следующие обозначения:

G - сила тяжести колокола

d - внутренний диметр колокола

? - толщина стенок колокола

? - плотность рабочей жидкости

h - глубина погружения колокола при р = 0

- глубина погружения колокола при избыточном давлении

Условие равновесия колокола при р=0 и ?<<d будет

,

,

Из этого уравнения видно, что перемещение колокола зависит только от величины избыточного давления и его геометрических размеров и не зависит от массы колокола.

Для данного прибора его геометрические размеры являются постоянными величинами; постоянна также и плотность затворной жидкости, поэтому уравнение можно записать в форме

.

Рисунок 13 - схема колокольного прибора с уравновешивающим грузом

На рисунке 13 показана принципиальная схема колокольного прибора с уравновешивающим грузом. В этом случае колокол подвешивается к коромыслу, к которому крепится также груз G.

Длину плеча коромысла АВ, к которому подвешен колокол, обозначим через , расстояние центра тяжести груза G от точки опоры коромысла - через а, площадь сечения колокола - через s. При давлении или разрежении колокол поднимется или опустится на некоторую величину . При этом коромысло и шток груза G повернутся на некоторый угол ?. Равновесие наступит тогда, когда сравняются моменты от силы давления под колоколом и силы тяжести груза т.е.

,

или

.

Сила тяжести колокола не входит в уравнение, так как она уравновешена силой тяжести груза. Уравновешивание пружиной применяется в дифференциальных манометрах. На рисунке 14 показана принципиальная схема бесшкального колокольного дифманометра - расходомера (ДК-1) с дифференциально-трансформаторным датчиком.

Прибор предназначен для измерения разности давлений газов. Колокол под воздействием разности давлений р1 - р2 и растянутой пружины, на которой он подвешен, погружается частично в трансформаторное масло. Плотность материала колокола больше плотности рабочей жидкости. Поэтому при р1 = р2 пружина будет растянута (она уравновешивает разность между силой тяжести колокола и силой от гидростатического давления). По мере нарастания разности давлений колокол поднимается, усилие пружины уменьшается (при дальнейшем увеличении перепада пружина уже не растягивается, а сжимается). При перемещении колокола перемещается плунжер дифференциально-трансформаторного датчика.

Рисунок 14 - схема бесшкального колокольного дифманометра: 1 - колокол; 2 - пружина; 3 - плунжер.

Конструкция прибора предусматривает, что газ или пар под избыточным давлением поступает из плюсовой камеры через разделительную жидкость в минусовую камеру. Вытесненная разделительная жидкость в этом случае попадает в запасные камеры, расположенные в основании прибора.

Такое устройство предупреждает повреждение прибора, если перепад давления превышает расчетный. Пределы измерения разности давлений от 98,1 до 981 Па (10-100 мм вод. ст.). При смене пределов измерений меняется сменная пружина. Предельное избыточное давление 0,245 МПа. Основная допустимая погрешность показаний в комплекте с вторичным прибором ±2% от максимального значения измеряемого перепада.

Рисунок 15 - схема электронного дифференциально-трансформаторного прибора: 1 - первичный прибор (дифманометр); 2 - вторичный прибор; 3,5 - сердечники

На рисунке 15 показана принципиальная схема датчика 1 в комплекте со вторичным прибором 2.

Рабочая катушка вторичного прибора совместно с катушкой датчика дифманометра включены в дифференциально-трансформаторную схему.

Каждая из катушек имеет первичную и вторичную обмотки. Вторичные обмотки состоят из секций, включенных навстречу одна другой. Благодаря такому включению э. д. с, индуктируемая в одной из секций, противоположна по знаку э. д. с, индуктируемой в другой секции.

Катушка с сердечником 5, включенная последовательно с катушками сердечников 3 и 4, служит для регулировки нулевого положения шкалы.

Она также имеет первичную обмотку и вторичную обмотку, состоящую из секций. Перемещая сердечник 5 в катушке, можно, не нарушая положения рабочих сердечников 3 и 4, отрегулировать начальное положение стрелки вторичного прибора.

При рассогласовании положений сердечников 3 и 4 возникнет напряжение разбаланса, величина и фаза которого зависят от величины и направления смещения сердечника 3.

Напряжение разбаланса усиливается в электронном усилителе ЭУ до величины, необходимой для управления реверсивным двигателем РД.

Реверсивный двигатель посредством профилированного диска перемещает сердечник 4 в положение, согласованное с сердечником 3, что приводит к равенству э. д. с, наводимых в обеих катушках, а следовательно, к новому состоянию равновесия. Одновременно реверсивный двигатель перемещает стрелку и перо прибора.

Кольцевые приборы предназначены для измерения малых давлений, разрежений и разности давлений.

Рисунок 16 - схема кольцевого прибора: 1-кольцо; 2 - перегородка; 3 - опора; 4,5 - трубка; 6 - груз.

На рисунке 16 показана схема кольцевого прибора. Он состоит из полого замкнутого кольца, разделенного вверху перегородкой. Кольцо подвешено при помощи ножовой опоры в геометрическом центре. С обеих сторон перегородки в кольцо входят трубки, служащие для соединения полостей кольца с полостью, в которой измеряется давление или разрежение. К нижней части кольца прикреплен груз. Полость кольца до половины заполнена жидкостью (водой, маслом, ртутью).

При соединении обеих полостей кольца с пространствами, в которых давление р и р1 (причем р > р1) уровень жидкости в левой половине кольца понизится, а в правой соответственно повысится; разность уровней будет пропорциональна разности давлений

,

В то же время сила от разности давлений, действующая на перегородку, создает вращающий момент

Мвр = (р - р1) sr,

где s - площадь перегородки; r - средний радиус кольца. Под действием этого момента кольцо поворачивается вокруг точки опоры по часовой стрелке. Поворот кольца создает противодействующий момент:

,

где G - сила тяжести груза;

а - расстояние центра тяжести системы от точки опоры; ? - угол поворота кольца.

При уравновешивании обоих моментов кольцо остановится в новом положении равновесия (Мвр = MG):

,

или

.

Так как сила тяжести груза и геометрические размеры кольца являются постоянными величинами, то уравнение можно написать в форме

.

Измеряемое давление (или разность давлений) пропорционально синусу угла поворота кольца. Поэтому шкала прибора неравномерная. Кроме того, по конструктивным соображениям угол поворота кольца нельзя сделать больше 60°, что ограничивает длину шкалы при непосредственном соединении кольца с указывающей стрелкой. Для увеличения длины шкалы между стрелкой прибора и кольцом выводят передачу, увеличивающую перемещение стрелки и одновременно выравнивающую шкалу прибора.

Приборы кольцевого типа изготовляются показывающими, показывающе-самопишущими, с дистанционной передачей показаний, а также в виде бесшкальных датчиков для систем телеизмерения.

Наибольшая возможная величина верхнего предела измерения определяется главным образом размерами кольца и плотностью затворной жидкости и обычно составляет 33,325 кПа (250 мм рт. ст.) для приборов с ртутным заполнением и 2,452 кПа (250 мм вод. ст.) для приборов с водяным или масляным заполнением. Изменение пределов измерения осуществляется сменой уравновешивающего груза.

Приборы с водяным и масляным заполнением предназначаются для работы при избыточном давлении до 49 кПа (0,5 кг/см2); приборы с ртутным заполнением - до 0,98-9,80 кПа (10 - 100 кг/см2). Основная допустимая погрешность кольцевых приборов не превышает 1,1-1,5% от верхнего предела измерения.

В приборах низкого давления кольцо изготовляется из листового металла. Измеряемая среда подводится с помощью резиновых трубок, создающих очень небольшой противодействующий момент, которым можно пренебречь. В приборах среднего давления кольцо изготовляют из цельнотянутой стальной трубы. Измеряемая среда подводится через бронзовые или стальные трубки, витки которых навиты в противоположных направлениях. При повороте кольца в спиралях возникают усилия, действующие в разные стороны и взаимно уравновешивающиеся.

Преимуществами кольцевых приборов перед поплавковыми и колокольными является отсутствие уплотнительных устройств в передаточном механизме (особенно важно для приборов высокого давления) и независимость чувствительности прибора от изменений плотности рабочей жидкости и среды над ней.

К недостаткам кольцевых приборов можно отнести чувствительность к качеству сборки и монтажа и наличие трубок, подводящих давление, которые могут вносить погрешность в измерении.

3.1.2 Поршневые манометры

Поршневые манометры в основном применяются для градуировки и поверки различных видов пружинных манометров, так как отличаются высокой точностью и широким диапазоном измерений, от 0,098 до 980 МПа (1-10 000 кг/см2).

Образцовый поршневой манометр (типа МОП) схематически показан на рисунке 17. Прибор состоит из колонки, укрепленной на станине прибора. В колонке имеется вертикальный цилиндрический канал, в котором движется пришлифованный поршень, несущий на верхнем конце тарелку для накладывания грузов.

Рисунок 17 - Схема образцового поршневого манометра типа МОП:

1 - колонка; 2 - поршень; 3 и 8 - воронки; 4 - бобышки;

5 - канал; 6 - тарелка: 7 - поршень; 9 - 13 - вентили

Верхняя часть колонки снабжена воронкой для сбора масла, просачивающегося через зазор между поршнем и цилиндром.

В станине высверлен горизонтальный канал, в расширенной части которого движется от винтового штока поршень 7, уплотненный манжетами.

Канал в станине соединяется с каналом колонки и каналами двух бобышек, служащих для укрепления поверяемых манометров. Кроме того, с каналом станины соединен канал воронки 8, которая служит для заполнения системы маслом. Каналы снабжены игольчатыми вентилями 9-12 для отъединения их от канала станины. Вентиль 13 служит для спуска масла из прибора.

Максимальное давление, создаваемое грузами, 4900 кПа (50 кг/см2).

Для поверки манометров на большее давление пользуются поршневым прессом, отъединив от прибора поршневую колонку 1 вентилем 10. В качестве прибора сравнения применяют образцовый пружинный манометр, присоединяя его к одной из бобышек 4, а поверяемый прибор - к другой бобышке.

Рисунок 18 - поршневой манометр с гидравлическим мультипликатором: 1 - трубка; 2 - корпус; 3-7 - цилиндры; 4 - поршень высокого давления; 5 - шкив; 6 - поршень низкого давления; 8 - колонка поршневого манометра

Образцовые поршневые манометры МОП с пределом измерений до 4,9 МПа в зависимости от разряда имеют основную относительную допустимую погрешность при температуре 20 ± 5° С: 1-го разряда 0,02%, 2-го разряда 0,05%, 3-го разряда 0,2%.

Приборы 1 и 2-го разрядов применяются для поверки образцовых поршневых и пружинных манометров, а приборы 3-го разряда - для поверки рабочих пружинных манометров.

Для измерения высоких давлений (до 980МПа) применяются поршневые манометры с гидравлическим мультипликатором (системы Жоховского), схема которого показана на рисунке 18. Он состоит из поршневого манометра с пределом измерения 4,9 МПа и двухпоршневого гидравлического мультипликатора.

Колонка 8 поршневого манометра установлена в верхней части корпуса 2 мультипликатора.

Мультипликатор имеет цилиндр низкого давления 7 и цилиндр высокого давления 3. Эти цилиндры имеют различные диаметры. Шток поршня 6 низкого давления опирается на головку поршня 4 высокого давления.

Пространство цилиндра 7 над поршнем 6 и соединенный с ним канал колонки 8 поршневого манометра заполнены маслом. Цилиндр 3 находится в полости корпуса и также заполнен маслом.

Поршни 4 и 6, расположенные соосно и соединенные муфтой, во время работы приводятся во вращение электродвигателем, соединенным со шкивом 5.

Трубка 1 соединяет полость корпуса с прессом высокого давления (на схеме не показан), к которому присоединяется поверяемый пружинный манометр.

Жидкость, нагнетаемая прессом высокого давления в полость корпуса, поднимает поршень 4, и его головка отходит от опорной поверхности торца цилиндра высокого давления. При этом жидкость в полости корпуса под поршнем высокого давления в трубке 1 и сообщающихся с ней каналах пресса будет находиться под давлением

,

где

и ,

здесь - эффективная площадь поршня низкого давления; - эффективная площадь поршня высокого давления; р1 - давление, создаваемое поршневым манометром; G1 - сила тяжести поршней низкого и высокого давления и соединенных с ними деталей.

Давление р0 мало по сравнению с kpl. Поэтому можно считать, что гидравлический мультипликатор увеличивает давление р1, создаваемое поршневым манометром, в k раз, т.е. р = kp1.

Применение мультипликатора с постоянной k = 200 позволяет создавать давление 980 МПа посредством поршневого манометра с пределом измерений 4,9МПа.

Постоянные k и р0 определяются путем гидростатического уравновешивания с каким-либо поршневым манометром с известной эффективной площадью поршня или по результатам измерения диаметров поршней и их взвешивания.

3.1.3 Пружинные приборы

Рисунок 19 - типы пружинных приборов

Пружинные манометры, вакуумметры, мановакуумметры, тягомеры, напоромеры, дифференциальные манометры и барометры составляют обширную группу приборов для технических измерений.

Действие этих приборов основано на измерении величины деформации различного вида упругих элементов. Деформация упругого чувствительного элемента преобразуется передаточными механизмами того или иного вида в угловое или линейное перемещение указателя по шкале прибора.

Преимущества пружинных приборов - простота устройства, надежность в эксплуатации, универсальность, портативность и большой диапазон измеряемых величин. Пружинные приборы изготовляются различных классов точности: от 0,5 до 4.

По виду упругого чувствительного элемента пружинные приборы делятся на следующие группы:

1) приборы с трубчатой пружиной или собственно пружинные (рисунок 19 а, б)

2) мембранные приборы, упругим элементом является мембрана мембранные приборы, упругим элементом является мембрана (рисунок 19, в), анероидная или мембранная коробка (рисунок 19, г и д), блок анероидных или мембранных коробок (рисунок 19, е и ж);

3) пружинно-мембранные с гибкой мембраной (рисунок 19, з) и пружинно-сильфонные (рисунок 19, и);

4) приборы с упругой гармониковой мембраной (сильфоном) (рисунок 19, к).

Приборы с трубчатыми пружинами

Наиболее широко применяются приборы (манометры, вакуумметры, мановакуумметры и дифманометры) с одновитковой трубчатой пружиной, изогнутой в виде дуги окружности, с центральным углом 180-270°.

Рисунок 20 - приборы с одновитковой трубчатой пружиной

а - схема трубчатой пружины (1 - трубка, 2 - держатель)

б - эллиптическое поперечное сечение;

в-плоскоовальное поперечное сечение

По назначению приборы с одновитковой трубчатой пружиной делятся на рабочие, контрольные и образцовые.

Пределы измерения, классы точности, допустимая температурная погрешность и некоторые другие параметры на отдельные виды приборов устанавливаются стандартами. Основной деталью прибора с одновитковой трубчатой пружиной является согнутая по дуге окружности трубка эллиптического или плоскоовального сечения (рисунок 20). Одним концом трубка заделана в держатель, оканчивающийся ниппелем с резьбой для присоединения к полости, в которой измеряется давление.

Внутри держателя имеется канал, который соединяется с внутренней полостью трубки.

Если в трубку подать жидкость, газ или пар под избыточным давлением, то кривизна трубки уменьшится и она распрямляется; при создании разрежения внутри трубки кривизна ее возрастает и она скручивается.

Один конец трубки закреплен; поэтому при изменении кривизны трубки ее свободный конец перемещается по траектории, близкой к прямой. Свободный конец трубки воздействует на передаточный механизм, который поворачивает стрелку показывающего прибора или перемещает сердечник индукционного телепередаточного датчика.

Свойство изогнутой трубки некруглого сечения изменять величину изгиба при изменении давления в ее полости является следствием изменения формы сечения.

Под действием давления внутри трубки эллиптическое или плоскоовальное сечение, деформируясь, приближается к круговому сечению (малая ось эллипса или овала увеличивается, а большая уменьшается).

Устройство вакуумметра и мановакуумметра с одновитковой трубчатой пружиной ничем не отличается от устройства манометра.

Рабочие приборы с круговой шкалой изготовляются показывающими, без дополнительных устройств, а также с контактным устройством, электрическим или пневматическим датчиком для телепередачи.

Показывающие приборы применяются чаще всего в качестве местных приборов. Электроконтактные манометры применяются для сигнализации о достижении минимального или максимального рабочего давления или для двухпозиционного регулирования.

Электроконтактный манометр по принципу действия аналогичен указывающему манометру с одновитковой трубчатой пружиной. Для сигнализации служит контактный механизм, электрическая схема которого аналогична применяемой в манометрических термометрах.

Контактный манометр может работать только при плавном (без пульсации) изменении давления.

На рисунке 21 показана принципиальная схема бесшкального дифференциального трансформаторного прибора, предназначенного в комплекте со вторичным прибором типа КСД) для дистанционного измерения. Давление воспринимается одновитковой трубчатой пружиной, перемещение свободного конца которой передается плунжеру дифференциально-трансформаторного датчика.

Рисунок 21-схема бесшкального прибора с дифференциально-трансформаторным датчиком: 1 - трубчатая пружина; 2 - плунжер

Основная допустимая погрешность прибора в комплекте со вторичным прибором КСД составляет ±2,5% от верхнего предела измерения (в том числе погрешность самого вторичного прибора не более ±1%.

3.1.4 Мембранные приборы

Приборы с чувствительным элементом в виде гофрированных мембран, мембранных коробок и мембранных блоков применяются для измерения небольших избыточных давлений и разрежений (манометры, напоромеры и тягомеры), а также перепадов давления (дифманометры-расходомеры).

Величина прогиба мембраны является функцией давления, действующего на нее. Зависимость прогиба от давления в общем случае нелинейна.

Число, форма и размеры гофра различны в зависимости от назначения, предела измерения и других факторов. Гофрировка мембраны увеличивает ее жесткость, т.е. уменьшает прогиб при одинаковом давлении.

Величина прогиба мембраны является сложной функцией давления, ее геометрических параметров (диаметра, толщины, числа гофров, их формы), а также модуля упругости материала мембраны.

Ввиду сложности расчета в большинстве случаев характеристика мембраны подбирается опытным путем.

Для увеличения прогиба в приборах для малых давлений (разрежение) мембраны попарно соединяют (сваркой или пайкой) в мембранные коробки, а коробки - в мембранные блоки. Мембранные коробки могут быть анероидными и манометрическими. Анероидные коробки, применяющиеся в барометрах и барографах, герметизированы и заполнены воздухом или каким-либо газом при очень малом давлении, обычно около 1,33 Па (0,01 мм рт. ст.). Деформация анероидной коробки происходит под действием разности давления окружающей ее среды и давления в полости коробки.

Так как давление в полости коробки очень мало, то можно считать, что ее деформация определяется атмосферным давлением. Деформация анероидной или манометрической коробки равна сумме деформаций составляющих ее мембран.

Для измерения небольших давлений и разрежений до 15680 Па (1600 мм вод. ст.) применяют мембранные тяго- и напоромеры. В этих приборах упругим элементом является коробка из двух гофрированных мембран. Внутренняя полость коробки соединяется с полостью, в которой измеряется давление или разрежение.

Выпускаются несколько типов мембранных тяго- и напоромеров: с концентрической шкалой, с горизонтально-профильной шкалой и с вертикально-профильной шкалой. Каждый из этих типов изготовляется в трех модификациях: напоромеры, тягомеры и тягонапоромеры с нулем посредине шкалы для измерения давлений и разрежений. Все эти виды приборов имеют принципиально одинаковые устройства и отличаются один от другого лишь элементами передаточного механизма и формой корпуса. На рисунке 22 показано устройство тягомера с горизонтально-профильной шкалой.

Трубка 14 соединяет полость мембранной коробки 1 с полостью, в которой измеряется давление. При повышении давления в коробке центр верхней мембраны перемещается вверх; через систему рычагов и тяг это движение передается на вертикальную ось 6, укрепленную в опоре 7. На вертикальной оси закреплена стрелка 8. Перемещение центра мембранной коробки не пропорционально давлению. Для линеаризации характеристики коробки применяется устройство, состоящее из плоской пружины 9, нагружающей мембранную коробку, и кронштейна 10 с установочными винтами 11.

При изгибе пружина 9 опирается на установочные винты 11, вследствие чего изменяется ее рабочая длина, а следовательно, и жесткость. Регулируя при градуировке прибора положение установочных винтов, можно добиться линейной характеристики упругой системы, т.е. равномерности шкалы прибора.

Рисунок 22 - мембранный тягомер с профильной шкалой:

1 - мембранная коробка; 2 и 4 - тяги; 3, 5 и 13 - рычаги; 6 - ось; 7-опора; 8-стрелка; 9 - плоская пружина; 10 - кронштейн; 11 - установочные винты; 12 - винт; 14 - трубка; 15 - пружина

Страницы: 1, 2, 3, 4


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.