реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Анализ существующей на Балаковской АЭС системы очистки трапных вод

QВА=1,03[GнCн(tк-tн)+WВА(hво-Cвtк)+Qконц] = DВА (hг- hконд), (3.2.1.4)

где 1,03 - коэффициент, учитывающий 3% потерь тепла в окружающую среду;

Сн - теплоемкость исходного раствора, кДж/(кг*К);

Cв =4,183кДж/(кг*К) - удельная теплоемкость воды при 20°С;

Qконц - теплота концентрирования раствора в интервале изменения концентрации, кВт;

tн - температура исходного раствора, °С.

Удельную теплоемкость раствора Cр, кДж/(кг*К), приближенно можно определить по правилу аддитивности [6,с.109]:

Ср=СсухX+Св(1-Х), (3.2.1.5)

где Ссух - удельная теплоемкость безводного нелетучего вещества в растворе, кДж/(кг*К);

Сн=1,089*0,01+4,183(1-0,01)=4,152 кДж/(кг*К);

СВА=1,089*0,3+4,183(1-0,3)=3,255 кДж/(кг*К);

Qконц=tк(GнCн-GВАCВА-WВАСв); (3.2.1.6)

Qконц=111,77(1,64*4,152-0,055*3,255-1,585*4,183)=0,011кВт;

QВА = 1,03[1,64*4,152(111,77 - 20) + 1,585(2683,8-4,183*111,77) + 0,011]

= 3861кВт;

; (3.2.1.6)

3.2.2 Тепловой баланс доупаривателя

В трубках циркулируют сточные воды, в корпусе - греющий пар.

Параметры греющего пара: tг=130°С; Рг=0,25МПа; hг=2720,7кДж/кг; температура насыщения hг.нас=127,43°С ; hконд=535,4кДж/кг.

Параметры вторичного пара в сепараторе: Рв.п.=0,125МПа; tв.п.=105,97°С; hв.п.=2685,6кДж/кг.

Начальная температура упаренного в ВА раствора tн=104,81 °С.

Давление в среднем слое кипящего раствора:

;

=1229кг/м3 [12,с.135]. Этому давлению соответствует температура кипения и теплота испарения раствора [3]: tср=108,9°С; r=2233,6кДж/кг.

Гидростатическая депрессия = 108,9-105,97=2,93 °С.

При атмосферном давлении и ХДУ=60% [6, с. 106].

Концентрационная температурная депрессия:

Суммарная депрессия

=14,82+2,93=17,75 °С.

Температура кипения раствора в корпусе ДУ:

Полезная разность температур:

Общая полезная разность температур:

Определим расход греющего пара и тепловую нагрузку аппарата:

QДУ=1,03[GВАCВА(tк-tн)+WДУ(hвп-Cвtк)+Qконц] = DДУ (hг- hконд);

Ск=1,089*0,6+4,183(1-0,6)=2,326 кДж/(кг*К) [6,с.109];

Qконц=tк(GВАCВА-GкCк-WДУСв)=123,72(0,055*3,255-0,027*2,326-

-0,028*4,183)=0,012кВт;

QДУ = 1,03[0,055*3,255(123,72 - 104,81) + 0,028(2685,6 -

4,183*123,72)+0,012]=96кВт;

Результаты расчета теплового баланса выпарного аппарата и доупаривателя сведем в таблицу 3.1.

Таблица 3.1

Параметр

выпарной аппарат

доупариватель

Производительность по выпариваемой воде W,

1,585

0,028

Концентрация растворов X, %

30

60

Давление греющего пара Рr, МПа

0,25

0,25

Температура греющего пара tr, °С

130

130

Температурные потери , °С

6,96

17,75

Температура кипения раствора tк, °С

111,77

123,72

Полезная разность температур , °С

18,23

6,28

Тепловая нагрузка Q, кВт

3861

96

3.3 Расчет коэффициентов теплопередачи

3.3.1 Расчет коэффициента теплопередачи выпарного аппарата

Коэффициент теплопередачи определим по уравнению аддитивности термических сопротивлений:

где , - коэффициенты теплоотдачи от конденсирующегося пара к стенке и от стенки к кипящему раствору;

- суммарное термическое сопротивление.

Примем, что суммарное термическое сопротивление равно термическому сопротивлению стенки и накипи без учета термического сопротивления загрязнений со стороны пара.

Выпарной аппарат выполнен из нержавеющей стали 12Х18Н10Т с =26,3Вт/(м*К), толщина стенки 2мм. Для накипи примем значения 2 Вт/(м*К) и 0,4мм;

Коэффициент теплоотдачи от конденсирующегося пара к стенке:

(3.3.1.2)

где r - теплота конденсации греющего пара, Дж/кг;

, , - соответственно плотность, кг/м3; теплопроводность, Вт/(мК);

вязкость, (Па*с) конденсата при средней температуре пленки

tпл=tг нас-,

где - разность температур конденсации пара и стенки, °С.

Расчет б1 проведем методом последовательных приближений по [2]. Примем в первом приближении =2°С.

Тогда tпл =127,43-2/2= 126,43 °С;

r=2184,75*103

=928

=0,685

=0,221*10-3

[6,с.111]

Для установившегося процесса передачи тепла удельная тепловая нагрузка:

(3.3.1.3)

где - перепад температур на стенке, °С;

- разность между температурой стенки со стороны раствора и температурой кипения раствора, °С;

;

Распределение температур в процессе теплопередачи от пара через стенку к кипящему раствору показано на рисунке 3.1.

1 - пар; 2 - конденсат; 3 - стенка; 4 - накипь; 5 - кипящий раствор.

Рисунок 3.1 - Распределение температур в процессе теплопередачи от пара к кипящему раствору через многослойную стенку.

Коэффициент теплоотдачи от стенки к кипящему раствору для пузырькового кипения в вертикальных кипятильных трубках при условии естественной циркуляции раствора:

(3.3.1.4)

Физические свойства кипящего раствора и его паров при tср=107,57°С по [11,с.135,136] указаны в таблице 3.1.

Таблица 3.1

Параметр

выпарной аппарат

Теплопроводность раствора , ВТ/(м*К)

0,565

Плотность раствора, кг/м3

1229

Теплоемкость раствора С, Дж/(кг*К)

3255

Вязкость раствора, Па* с

0,255* 10-3

Поверхностное натяжение , Н/м

0,0753

Теплота парообразования rвп, Дж/кг

2237*103

Плотность пара, кг/м3

0,165

=8773*2=17546 Вт/м2;

=3516* 11,39=40047 Вт/м2;

Для второго приближения примем =3°С.

Изменением физических свойств конденсата при изменении температуры на 1 градус пренебрегаем.

=7927 Вт/(м2К);

=7927*3*2,76* 10-4=6,77 °С; =18,23-6,77-3=8,46 °С;

=9,99(7927*3)0,6=4220Вт/(м2)

=7927*3=23781 Вт/м2;=4220*8,46=35701 Вт/м2;

Для третьего приближения примем =4°С.

=7377 Вт/(м2К);

=7377*4*2,76* 10-4=8,14 °С;

= 18,23-8,14-4=6,09 °С;

=9,99 (7377*4)0,6=4803 Вт/(м2К);

=7377*4=29508 Вт/м2;

=4803*6,09=29250 Вт/м2.

Расхождение между тепловыми нагрузками 0,9% допускается.

Коэффициент теплопередачи для выпарного аппарата:

=1614 Вт/(м2*К).

3.3.2 Расчет коэффициента теплопередачи доупаривателя

Доупариватель выполнен из нержавеющей стали 12Х18Н10Т с

ст=26,ЗВт/(м*К), = 2,76*10-4 м2К/Вт.

Примем в первом приближении =1 °С,

tпл= 127,43-1/2=126,93 °С;

=10433 Вт/(м2К);

=2,88°С;

°С.

Физические свойства кипящего раствора и его паров при tср=108,9°С по [11,с.135,136] указаны в таблице 3.2.

Таблица 3.2

Параметр

доупариватель

Теплопроводность раствора , ВТ/(м*К)

0,555

Плотность раствора, кг/м

1322

Теплоемкость раствора С, Дж/(кг*К)

2945

Вязкость раствора , Па* с

0,364*10-3

Поверхностное натяжение , Н/м

0,0789

Теплота парообразования rвп, Дж/кг

2233,5*103

Плотность пара , кг/м

0,198

=10433 Вт/м2;

Для второго приближения примем =0,5°С.

=14754 Вт/(м2К);

=14754*0,5*2,76* 10-4=2,04 °С; =6,28-2,04-0,5=3,74 °С;

=9,29 (14754*0,5)0,6=1944Вт/(м2К);;=14754*0,5=7377 Вт/м2;=1944*3,74=7271 Вт/м2;

Для третьего приближения примем =0,49°С.

=14829 Вт/(м2К);

=14829*0,49*2,76* 10-4=2°С;

=6,28-2-0,49=3,790С;

=9,29 (14829*0,49)0,6=1927Вт/(м2К);

=14829*0,49=7266Вт/м2;

=1927*3,79=7303 Вт/м2.

Расхождение между тепловыми нагрузками 0,5% допустимо.

Коэффициент теплопередачи для доупаривателя:

= 1160 Вт/(м2*К).

Рассчитаем поверхности теплопередачи выпарного аппарата и доупаривателя:

;(3.3.2.1)

;

Определяем толщину тепловой изоляции ВА и ДУ из условия равенства теплового потока через стенку аппарата и слой тепловой изоляции и потока, уходящего от поверхности изоляции в окружающую среду:

(3.3.2.2)

где =35°С - температура изоляции со стороны окружающей среды (для аппаратов, работающих в закрытых помещениях);

=9,3+0,058=11,33 Вт/(м2К) -

коэффициент теплоотдачи от внешней поверхности изоляционного материала в окружающую среду;

- температура изоляции со стороны аппарата, °С, ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции примем ;

=20°С - температура окружающего воздуха в помещении;

- коэффициент теплопроводности изоляционного материала, Вт/(м*К) [13, с.316].

Теплоизоляционный материал совелит с коэффициентом теплопроводности =0,093 Вт/(м*К) [7,с.269], [9, с.264].

Для ВА и ДУ =130°С;

(3.3.2.3)

3.4 Расчет дефлегматора сдувок

В трубках циркулирует охлаждающая техническая вода, в корпусе -парогазовая сдувка.

Парогазовая сдувка имеет следующие параметры: давление пара Рп=0,12 МПа, его температура °С, энтальпия пара hп=2683,8кДж/кг, энтальпия

конденсата hк=439,36кДж/кг [3], температура конденсата на выходе из дефлегматора tк=50°С.

Начальная и конечная температуры охлаждающей воды: °С, °С. Средняя температура воды

°С.

Схема движения теплоносителей прямоточная.

Тепловая мощность дефлегматора определяется из уравнения теплового баланса:

[14,с.20] (3.4.1)

где WДФ - расход парогазовой сдувки, кг/с;

WДФ =0,165кг/с (согласно технологическому процессу (0,161+0,004)кг/с);

С - удельная теплоёмкость жидкого горячего теплоносителя, С=4225 Дж/(кг*К);

Gв - расход охлаждающей воды, кг/с;

Св - удельная теплоёмкость воды, Св=4174Дж/(кг*К) при tв=42,5°С;

QДФ=0,165(2683,8-439,36)103+0,165*4225(104,81-50)=408542Вт.

Расход охлаждающей воды:

(3.4.2)

Средний температурный напор:

(3.4.3)

°С

Средняя температура в корпусе

tср=tв+=42,5+33,61 =76,11 °С.

Определим коэффициент теплопередачи графоаналитическим методом, т.к. не имеем значения температуры стенки. [6, с.35,69]

По формуле Нуссельта при °С среднее значение коэффициента теплоотдачи для пара

(3.4.4)

Поверхностная плотность теплового потока от пара к стенке, Вт/м2:

Вт/м2.

Дефлегматор выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/20мм, толщина стенки 2,5мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.

Поверхностная плотность теплового потока через стенку трубы:

(3.4.5)

Поверхностная плотность теплового потока через накипь:

Вт/м2 .

Поверхностная плотность теплового потока от стенки к воде:

Вт/м2;

для вертикальных труб =0,636Вт/(м*К);

=1,5м/с - принятая скорость в трубах;

=0,633* 10-6 м2/с - кинематическая вязкость воды при tв=42,5°С;

(3.4.6)

47393104<Rе< 106, движение турбулентное;

(3.4.7)

[6,с.36,59].

Строим график зависимости (рисунок 3.2).

При =33,61°Сq=96000Вт/м2

Коэффициент теплопередачи дефлегматора:

2856 Вт/(м2*К).

Площадь поверхности теплообмена:

4,26 м2.

Рисунок 3.2 - Построение зависимости при графоаналитическом методе расчета дефлегматора

Примем количество уходящих несконденсировавшихся газов 0,028кг/с (производственные данные), тогда в конденсатор-дегазатор возвращается конденсат в количестве 0,165-0,028=0,137кг/с.

3.5 Расчет конденсатора-дегазатора

3.5.1 Расчет конденсатора

В трубках циркулирует техническая вода, в корпусе - вторичный пар после выпарного аппарата и доупаривателя.

Вторичный пар поступает в количестве 0,9W=1,452кг/с и имеет следующие параметры: давление пара Рп=0,12 МПа, его температура t/п=104,81°С, энтальпия пара hп=2683,8кДж/кг, энтальпия конденсата hк=439,36кДж/кг, температура конденсата на выходе из конденсатора tК=50 °С.

Схема движения теплоносителей простая смешанная (один ход в межтрубном пространстве и два хода в трубном).

Начальная и конечная температуры охлаждающей воды: t/в=28°С, t//в=47°С. Средняя температура воды

tв=0,5(t/в+t//в)=0,5(28+47)=37,5°С.

Определим среднюю разность температур [4,с.170].

При противотоке 104,81-47=57,81 =50-28=22;

(3.5.1.1)

(3.5.1.2)

31,52°С

Средняя температура в корпусе tср=tв+=37,5+31,52=69,02 °С.

Тепловая мощность горизонтального теплообменника конденсатора определяется из уравнения теплового баланса:

Qк=0,9W[(hп-hк)+C(t/п-tк)]=GвCв(t//в-t/в) [14.с.20],(3.5.1.3)

где 0,9W - расход вторичного пара в горизонтальный теплообменник конденсатора после ВА и ДУ;

С - удельная теплоёмкость жидкого горячего теплоносителя, С=4225 Дж/(кг*К);

Gв - расход охлаждающей воды, кг/с;

Cв - удельная теплоёмкость воды,

Св=4174Дж/(кг*К) при tв=37,5°С;

Qк=1,452(2683,8-439,36)103+1,452*4225(104,81-50)=3595169,79Вт.

Расход охлаждающей воды:

(3.5.1.4)

45,33 кг/с.

Определим коэффициент теплопередачи графоаналитическим методом.

По формуле Нуссельта при t/п= 104,81 °С:

(3.5.1.5)

где - поправочная функция, для водяного пара примем =1;

- поправочный множитель, учитывающий влияние числа труб по вертикали, при n>100 =0,6 [4,с.162],[13,с.288];

Поверхностная плотность теплового потока от пара к стенке, Вт/м2:

Вт/м2.

Теплообменник выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/20мм, толщина стенки 2,5мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.

Поверхностная плотность теплового потока через стенку трубы:

.

Поверхностная плотность теплового потока через накипь:

.

Поверхностная плотность теплового потока от стенки к воде:

=0,628Вт/(м*К);

=1,5м/с - принятая скорость в трубах;

=0,717* 10-6 м2/с - кинематическая вязкость воды при tв=37,5°С;

Rе>3500;[6,с.36,59]

[4,с.155](3.5.1.6)

Строим график зависимости (рисунок 3.3).При 31,52°С q=99900 Вт/м2

Коэффициент теплопередачи конденсатора:

3169 Вт/(м2*К).

Площадь поверхности теплообмена:

35,99 м2.

3.5.2 Расчет испарителя

В корпусе кипит конденсат, в змеевике конденсируется греющий пар.Параметры греющего пара: 130°С, Рг=0,25МПа, =2720,7кДж/кг,

hконд=535,4кДж/кг, температура конденсации греющего пара =127,43°С.

В конденсатосборник поступает конденсат в количестве Gк=1,452кг/с, его температура tК=50°С. Конденсат нагревается до tкип=104,81°С.

Уравнение теплового баланса:

Qи =GкCк(tкип-tк)+аGкr =Dи(- hконд), [14,с.19] (3.5.2.1)

где Dи - расход греющего пара в испаритель, кг/с;

Gк - расход холодного теплоносителя (конденсата), кг/с;

Cк - удельная теплоемкость конденсата при tк.ср;

Cк =4,2кДж/кг*К;

примем =0,97;

r - теплота парообразования теплоносителя, кДж/кг;

a - доля конденсата, испаряющегося в змеевиковом испарителе; примем a=0,1;

Qи=1,452*4200(104,81-50)+0,1*1,452*2244,4=334579Вт.

Рисунок 3.3 - Построение зависимости при графоаналитическом методе расчета конденсатора

Расход греющего пара в испаритель:

(3.5.2.2)

0,16кг/с.

Средняя разность температур:

нач= - =127,43-50=77,43 кон = - =127,43-104,81=22,62

°С

Определим коэффициент теплопередачи в змеевике [4,с.153]:

, (3.5.2.3)

где - коэффициент, учитывающий относительную кривизну змеевика;

(3.5.2.4)

где d - внутренний диаметр трубы змеевика, мм;

D - диаметр витка змеевика, мм; т.к. сборник конденсата имеет диаметр 800мм,

примем D=600мм; d=19,2мм;

1,113.

(3.5.2.5)

где А - коэффициент, объединяющий физико-химические константы воды и пара, по[4,с.164] А=7,5;

d - внутренний диаметр трубы, м;

L - длина трубы;

по [4,с.163] при =44,56°С

183,3L=183,3d=183,3*19,2=3519,36мм;

Поверхностная плотность теплового потока от пара к стенке:

Конденсатосборник выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/19,2мм, толщина стенки 2,9мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.

Поверхностная плотность теплового потока через стенку трубы:

Поверхностная плотность теплового потока через накипь:

При кипении жидкости в большом объеме коэффициент теплопередачи:

(3.5.2.6)

где С - коэффициент, зависящий от свойств жидкости и поверхности нагрева; примем для кипящего конденсата С=3;

=1 - множитель, учитывающий физические свойства жидкости; при

tк.ср= 100°С Р= 1 кг/см2;

; [15,с.44]

Графически определяем при =44,56°С q=631281 Вт/м2 .

Коэффициент теплопередачи конденсатора:

Площадь поверхности теплообмена:

3.5.3 Расчет охладителя конденсата

Из конденсатора-дегазатора выходит 1,585кг/с дистиллята, 0,25кг/с дистиллята подается в виде флегмы в выпарной аппарат. Дегазированный дистиллят поступает в корпус охладителя в количестве 1,335кг/с и имеет следующие параметры: Рд=0,12МПа t/д=104°С, температура дистиллята на выходе из охладителя t//д =50°С.

Схема движения теплоносителей прямоточная.

В трубках циркулирует охлаждающая вода: t/в=25°С, t//в=45°С. Средняя температура воды

tв.ср=0,5(t/в + t//в)=0,5(25+45)=35°С.

Средняя разность температур: при прямотоке

=104-25=79 =50-45=5;

°С

Средняя температура дистиллята в корпусе:

tд.ср=tв.ср+tср=35+26,81=61,81°С.

Тепловой баланс охладителя конденсата [14,с.18]:

Qохл=GдCд(t/д- t//д)= GвCв(t/в- t/в),(3.5.3.1)

где Gд - расход дистиллята;

Cд - удельная теплоёмкость дистиллята, Cд =4180Дж/(кг*К);

Gв - расход охлаждающей воды;

Cв - удельная теплоёмкость воды,

Св=4174Дж/(кг*К);

Qохл=1,335 *4180(104-50)=301336 Вт.

Расход охлаждающей воды:

Определим коэффициент теплопередачи графоаналитическим методом. По формуле Нуссельта среднее значение коэффициента теплоотдачи для дистиллята: примем Н=4м;

Поверхностная плотность теплового потока от дистиллята к стенке

Вт/м2.

Охладитель выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/21мм, толщина стенки 2мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.

Поверхностная плотность теплового потока через стенку трубы:

Поверхностная плотность теплового потока через накипь:

Поверхностная плотность теплового потока от стенки к воде:

Вт/м2,

для вертикальных труб =0,627Вт/(м*К);

= 1,5м/с - принятая скорость в трубах;

=0,732* 10-6 м2/с - кинематическая вязкость воды при tв=35°С;

104<Rе<106, движение турбулентное;

(3.5.3.2)

где Prв=4,87;

=1 - поправка, учитывающая отношение l/d трубки.

6590 Вт/(м2К).

Графически определяем при =26,81°С q=22306 Вт/м2.

Коэффициент теплопередачи охладителя:

Площадь поверхности теплообмена:

3.6 Анализ теплотехнических расчетов

В настоящее время для очистки трапных вод с энергоблоков 1-4 на Балаковской АЭС применяются три выпарные установки: две в работе, одна в резерве.

Фактические поверхности теплопередачи выпарного аппарата и доупаривателя составляют:

Fф.ВА= 160*3=480 м2Fф.ДУ=20*3=75 м2

Расчетные поверхности теплопередачи выпарного аппарата и доупаривателя составляют:

Fр.ВА=131,22*3=393,66 м2Fр.ДУ=13,18*3=39,54м2

Проведенные расчеты показывают, что при переработке трапных вод с шести энергоблоков АЭС запас площади поверхности теплопередачи составит:

FВА= Fф.ВА - Fр.ВА=480-393,66=86,34м2 (18%)

FДУ= Fф.ДУ - Fр.ДУ=75-39,54=35,46м2 (47,3%)

Аналогично для конденсатора-дегазатора:

Fф.К=50,3*3=150,9 м2Fр.К=35,99*3=107,97 м2

FК= Fф.К - Fр.К=150,9-107,97=42,93м2 (28,4%)

Fф.И=0,55*3=1,65 м2Fр.И=0,53*3=1,59 м2

FИ= Fф.И - Fр.И=1,65-1,59=0,06 м2 (3,64%)

Для дефлегматора сдувок:

Fф.ДФ=5*3=15 м2Fр.ДФ=4,26*3=12,78 м2

FДФ= Fф.ДФ - Fр.ДФ=15-12,78=2,22м2 (14,8%)

Для охладителя конденсата:

Fф.охл=20*3=60 м2Fр.охл=13,5*3=40,5 м2

Fохл= Fф.охл- Fр.охл=60-40,5=19,5м2 (32,5%)

Следовательно, действующая в настоящее время установка обеспечит выпаривание трапных вод с шести энергоблоков Балаковской АЭС со значительным запасом площади поверхности теплопередачи.4 КИП и автоматизация

Автоматические системы управления технологическими процессами обеспечивают оптимальные условия эксплуатации оборудования в предпусковой период, при пуске, эксплуатации и останове энергоблока, удобство обслуживания и повышают безопасность работы энергоблоков АЭС.

Требования, предъявляемые к приборам и средствам автоматизации на установке спецводоочистки трапных вод АЭС, в первую очередь определяются свойствами агрессивных сред, параметры которых измеряются. Необходимо учитывать температуру и концентрацию веществ, вызывающих коррозию, радиоактивность, влажность помещения, наличие пыли. Влияние концентрации и температуры сред учитывается при выборе соответствующих материалов для датчиков (например, чехлы термометров, диафрагмы, расходомеров, соприкасающихся со средой).

Чтобы избежать коррозии щитовых средств контроля и автоматизации, а также сохранить эксплуатационные характеристики в условиях запыленности и загрязненности атмосферы производственных помещений, необходима максимальная централизация их с очисткой и кондиционированием воздуха, подаваемого в диспетчерские пункты.

Для снижения расхода средств на автоматизацию в проекте предлагается использование приборов ГСП (Государственной системы приборов), что позволит реализовать принцип взаимозаменяемости приборов, их централизацию (меньшее количество диспетчерских пунктов). Кроме того, это повысит безопасность обслуживания оборудования.

Для удобства работы щиты приборов снабжены мнемосхемой.

На установке СВО трапных вод заложены в проекте следующие системы автоматизации и контроля:

1. Для измерения уровня вод в выпарном аппарате, доупаривателе, конденсаторе-дегазаторе применяются фотоэлектрические датчики уровнятипа СУФ-42 в комплекте с реле и сигнальным устройством, пьезометрической трубкой, манометром сильфонным с выходным сигналом 0,2-1кгс/см2.

Вторичные приборы - пневматические ПВ 10.1.Э (к датчикам с пневматическим выходом).

Регулятор пропорциональный ПР 1.5.

2.Давление в трубопроводах, аппаратах измеряется и контролируется с помощью манометров пружинных общего назначения ОБМ1-160 с диапазонами измерения 0-1кгс/см2, 0-6кгс/см2.

Вторичный прибор - потенциометр автоматический показывающий, самопишущий с изодромным регулятором типа КСП-3 с выходным сигналом 0,2-1кгс/см2.

3. В качестве датчика для измерения расхода воды используется дифманометр сильфонный показывающий, выходной сигнал 5мА, тип ДСП-786И.

Вторичные приборы типа ПВ4.2Э.

Регуляторы: ПР3.21 - приборы пневматической ветви ГСП, Б412 - блок управления аналогового регулятора.

В качестве регулирующей арматуры используются регулирующие клапаны с пневматическим исполнительным мембранным механизмом типа 25с48нж; для газов и воздуха - поворотные регулирующие заслонки типа СИУ ряда 101 с пневматическим следящим поршневым приводом ПСП-Т1.

4.Измерение температуры и регулирование подачи вод.

В выпарном аппарате и доупаривателе производится регулирование подачи трапных вод по температурной депрессии.

В качестве датчика использован термопреобразователь сопротивления медный типа ТСМ-6097, градуировка 23.

Вторичный прибор - мост автоматический показывающий, самопишущий типа КСМ-3, выходной сигнал 0,2-1кгс/см2. Регулятор пропорциональный типа ПР 1.5.

5.Измерение концентрации упаренного раствора производится плотномером жидкости типа ПЖР-5 с радиоизотопными излучателями, диапазон измерения 0,1-2г/см3. [16,17,18]

Таблица 4.1

Перечень КИП и А выпарной установки

Позиция

Наименование

Кол-во, шт.

Тип

1-1,2-1,3-1, 4-1,5-1,7-1, 9-1

Манометр пружинный

14

ОБМ1-160

5-2,7-2,9-2, 5-3,7-3,9-3

Прибор вторичный - потенциометр с изодромным регулятором

9

КСП-3

11-1,13-1, 15-1,17-1

Датчик уровня

12

СУФ-42

11-2,13-2, 15-2,17-2

Прибор вторичный

12

ПВ 10.1.Э

11-3,13-3, 15-3,17-3

Регулятор пропорциональный

12

ПР1.5

19-1

Дифманометр

3

ДСП-786И

19-2

Прибор вторичный пневматический

3

ПВ 4.2.Э

19-3

Прибор регулирующий

3

ПР3.21

21-1,23-1

Термопреобразователь сопротивления

6

ТСМ 6097

21-2,23-2

Компенсационный автоматический прибор

6

КСМ-3

21-3,23-3

Прибор регулирующий

6

ПР1.5

25-1

Плотномер

3

ПЖР-5

Заключение

В курсовом проекте проведены теплотехнологические расчеты выпарной установки СВО-3 для очистки радиоактивных сточных вод Балаковской АЭС, определены параметры и конструктивные характеристики оборудования установки; разработана схема автоматизации, выбраны приборы и регуляторы; определены ожидаемые технико-экономические показатели.

В результате проведенных расчетов существующей системы очистки трапных вод определена возможность её реконструкции с целью использования для переработки трапных вод с шести энергоблоков. Имеющаяся поверхность теплопередачи (FВа=393,66 м2, Рду=39,54 м2 ) обеспечит выпаривание 17,71м3 /ч сточных вод от начальной концентрации 1% до конечной - 60%.

Такое решение позволит полностью отказаться от дополнительных строительных работ и приобретения оборудования, оставив только затраты на стоимость трубопроводов, проложенных от установки до энергоблоков 5 и 6, арматуры, монтажные и наладочные работы.

Список использованных источников

Коростелев Д.П. Обработка радиоактивных вод и газов на АЭС. - М.: Энергоатомиздат, 1988. - 150с.

Основные процессы и аппараты химической технологии: Пособие по проектированию. Издание второе, переработанное и дополненное / Под ред. Ю.И. Дытнерского. - М.: Химия, 1991. - 493с.

Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара: Справочник. Издание второе, переработанное и дополненное. - М.: Энергоатомиздат, 1984. - 79с.

Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Издание десятое, переработанное и дополненное. - Л.: Химия, 1987. - 575с.

5 Перри Дж. Справочник инженера-химика. Т. 1-3. - Л.: Химия, 1969.- 639с.

Промышленные тепломассообменные процессы и установки / Под ред. А.М. Бакластова. - М.: Энергоатомиздат, 1986. - 323с.

Теплотехнический справочник / Под ред. С.Г.Герасимова. Т.1. - М, Л.: Государственное энергетическое издательство, 1957. - 728с.

Лащинский А.А., Толчинский А.Р. Основы конструирования и расчета химической аппаратуры: Справочник. - М, Л.: Государственное научно-техническое издательство машиностроительной литературы, 1963. - 467с.

Бакластов А.М., Горбенко В.А., Удыма П.Г. Проектирование, монтаж и эксплуатация тепломассообменных установок. - М.: Энергоиздат, 1981. - 335с.

Страницы: 1, 2


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.