![]() |
|
|
Записка к расчетамЗаписка к расчетамКОМПОНОВКА КОНСТРУКТИВНОЙ СХЕМЫ СБОРНОГО ПЕРЕКРЫТИЯ. Ригели поперечных рам – трехпролетные, на опорах жестко соединены с крайними и средними колоннами. Ригели расположен в поперечном направлении, за счет чего достигается большая жесткость здания. Поскольку нормативная нагрузка на перекрытие (4 кПа) меньше 5 кПа, принимаем многопустотные плиты. Наименьшая ширина плиты – 1400 мм. Связевые плиты расположены по рядам колонн. В среднем пролете предусмотрен такой один доборный элемент шириной 1000 мм. В крайних пролетах предусмотрены по монолитному участку шириной 425 мм. В продольном направлении жесткость здания обеспечивается вертикальными связями, устанавливаемыми в одном среднем пролете по каждому ряду колонн. В поперечном направлении жесткость здания обеспечивается по релико- связевой системе: ветровая нагрузка через перекрытие, работающие как горизонтальные жесткие диски, предается на торцевые стены, выполняющие функции вертикальных связевых диафрагм, и поперечные рамы. Поперечные же рамы работают только на вертикальную нагрузку. 1. Расчет многопустотной преднопряженной плиты по двум группам предельных состояний. 1. Расчет многопустотной преднопряженной плиты по I группе предельных состояний 2.1.1 Расчетный пролет и нагрузки. Для установления расчетного пролета плиты предварительно задается размерами – ригеля: высота h=(1/8+1/15)* l= (1/11)*5.2=0.47?0.5 м. ширина b=(0.3/0.4)*hbm=0.4*0.5=0.2 m. При опирании на ригель поверху расчетный пролет плиты равен: l0=l- b/2=6-0.2/2=5.9 m. Таблица 1. Нормативные и расчетные нагрузки на 1 м2 перекрытия |Вид нагрузки |Нормативная |Коэффициент |Расчетная | | |нагрузка, |надежности по |нагрузка, | | |Н/м2 |нагрузке |Н/м2 | |Постоянная: |2800 |1,1 |3080 | |-собственный вес | | | | |многопустотной | | | | |плиты | | | | |-то же слоя |440 |1,3 |570 | |цементного | | | | |раствора, | | | | |g=20 мм, | | | | |R=2000кг/м3 |240 |1,1 |270 | |-тоже керамических| | | | |плиток, | | | | |g=13 мм, | | | | |R=1300кг/м3 | | | | |Итого |3480 |- |3920 | |Временная |4000 |1,2 |4800 | |В т.ч. длительная |2500 |1,2 |3000 | |краткосрочная |1500 |1,2 |1800 | |Полная |7480 |- |8720 | |В т.ч. постоянная | | | | |и длительная |5980 |- |- | |кратковременная |1500 |- |- | Расчетная нагрузка на 1 м длины при ширине плиты 1,4 м с учетом коэффициента надежности по назначению здания јn=0,95: постоянная g=3920*1.4*0.95=5.21 кН/м; полная g+ ? = 8720*1,4*0,95=11,6 кН/м; временная ?=4800*1,4*0,95=6,38 кН/м. Нормативная нагрузка на 1 м длины: постоянная g=3480*1.4*0.95=4.63 кН/м; полная g+ ?=7480*1.4*0.95=9.95 кН/м, в точности постоянная и длительная (g+ ?)l=5980*1.4*0.95=7.95 кН/м. 2.1.2 Усилие от расчетных и нормативных нагрузок. От расчетной нагрузки М=( g+ ?)l02/8=11.6*103*5.92/8=50.47 кН*м; Q==( g+ ?)l0/2=11.6*103*5.92/2=34.22 кН От нормативной полной нагрузки М=9.95*103*5.92/8=43.29 кН*м. Q=9.95*103*5.92/2=29.35 кН. От нормативной постоянной и длительной нагрузки М=7.95*103*5.92/8=34.59 кН*м. 2.1.3 Установление размеров сечения плиты. Высота сечения многопустотной преднопряженной плиты h=l0/30=5.9/30?0.2 м. (8 круглых пустот диаметром 0.14 м). Рабочая высота сечения h0=h-e=0.2-0.03?0.17 м Размеры: толщина верхней и нижней полок (0.2-0.14) *0.5=0.03 м. Ширина ребер: средних 0.025 м, крайних 0.0475 м. В расчетах по предельным состоянием, I группы расчетная толщина сжатой полки таврого сечения hf’=0.03 м; отношение hf’/h=0.03/0.2=0.15>0.1-при этом в расчет вводится вся ширина полки bf’=1.36 м;рр расчетная ширина ребра b=1.36-8*0.14=0.24 м. Рисунок 2 – Поперечные сечения плиты а) к расчету прочности б) к расчету по образованию трещин. 2.1.4 Характеристики прочности в стене и арматуры. Многопустотную преднопряженную плиту армируем стержневой арматурой класса А-IV с электротермическим способом натяжения на упоры форм. К трещиностойкости плиты предъявляют требования 3 категории. Изделие подвергаем тепловой обработке при атмосферном давлении. Бетон тяжелый класса В30, соответствующий напрягаемой арматуре. Призменная прочность нормативная Rbn=Rb,ser=22 МПа, расчетная Rb=17 МПа, коэффициент условий работы бетона jb=0.9; нормативное сопротивление при растяжении Rbth=Rbt,ser=1.8 МПа, расчетное Rbt=1.2 МПа; начальный модуль упругости Еb=29 000 МПа. Передаточная прочность бетона Rbp устанавливается так чтобы обжатии отношения Gbp/Rbp? 0.79 Арматура продольных ребер – класса А-IV, нормативное сопротивление Rsn=590 МПа, расчетное сопротивление Rs=510 МПа, модуль упругости Еs=190 000 МПа. Преднапряжение арматуры принимаем равным Gsp=0.75Rsn=0.75*590*106=442.5 МПа. Проверяем выполнение условия: при электротермическом способе натяжения р=30+360/l=30+360/6=90 МПа. Gsp+p=(442.5+90)*106=532.5 МПаjspmin=0.1, где n=5 – число напрягаемых стержней; Коэффициент точности натяжения при благоприятном преднапряжении jsp=1- ?jsp=1-0,14=0,86 При проверке на образование трещин в верхней для плиты при обжатии принимаем jsp=1+0,14=1,14. Преднапряжение с учетом точности натяжения Gsp=0.86*442.5*106=380.6 МПа. 2.1.5 Расчет прочности плиты по сечению, нормальному к продольной оси. M=50.47 кН*м. Вычисляем ?m=М/(Rb*bf’*h20)=50.47*103/(0.9*17*106*1.36*0.172)=0.084. По таблице 3.1[1] находим: ?=0,955; ?=0,09; х= ?*h0=0,09*0,17=0,015 м ?=1.2, где ?=1,2 – для арматуры класса А-IV Принимаем jSG= ?=1,2. Вычисляем площадь сечения растянутой арматуры: Аs=М/ jSG*RS* ?*h0=50.47*103/1.2*510*106*0.955*.17=5.08*10-4 м2. Принимаем 5ш12 А-IV с А3=5,65*10-4 м2. 2. Расчет многопустотной плиты по предельным состояниям II группы. 1. Геометрические характеристики приведенного сечения. Круглое очертание пустот заменяем эквивалентным квадратным со стороной h=0.9*d=0.9*0.14=0.126 m. Толщина полок эквивалентного сечения hf’=hf=(0.2-0.126)*0.5=0.037 м. Ширина ребра b=1.36-8*0.126=0.35 м. Ширина пустот:1.36—0.35=1.01; Площадь приведенного сечения Ared=1,36*0,2-1,01*0,126=0,145 м2. Расстояние от нижней грани до ц.т. приведенного сечения y0=0.5*h=0.5*0.2=0.1 m. Момент инерции сечения Jred=1.36*0.23/12-1.01*0.1263/12=7.38*10-4 m4. Момент сопротивления сечения по нижней зоне Wred= Jred/ y0=7.38*10- 4/0.1=7.38*10-3 m3; то же по верхней зоне: Wred’=7.38*10-3 m3. Расстояние от ядровой точки, наиболее удаленной от растянутой зоны (верхней) до ц.т. сечения. ? = ?n*(Wred/Ared)=0.85*(7.38*10-3/0.185)=0.034 m. то же, наименее удаленной от растянутой зоны (нижней): ?Tnf = 0.034m. здесь: ?n = 1.6- Gbp/Rbp=1.6-0.75=0.85. Отношение напряжения в бетоне от нормативных нагрузок и усилия обжатия к расчетному сопротивлению бетона для предельного состояния II группы предварительно принимаем равным 0,75. Упругопластический момент сопротивления по растянутой зоне Wpl=j* Wred=1.5*7.38*10-3=11.07*10-3 m3; здесь j=1.5 – для двутаврового сечения при 2q=8.4 кН/м, принимаем с=2,5h=2.5*0.17=0.43 m. Другое условие: Q= Qmax-qc=(34.22-8.4*0.43)*103=30.61 кН/м; Qb= ?bn(1+ ?bn) Rbt*b*h02*c=1.5*1.44*0.9*1.2*106*0.24*0.172/0.43=37.63 кН>Q=30.61 кН – удовлетворяет также. Следствие, поперечная арматура по расчету не требуется. Конструктивно на приопорных участках длиной 0,25l устанавливаем арматуру ш4 Вр-I с шагом S=h/2=0.2/2=0.1m; в средней части пролета поперечно арматуре не применяется. 4. Расчет по образованию трещин, нормальных к продольной оси. М=43.29 кН*м. Условие: М?Мerc Вычисляем момент образования трещин по приближенному способу ядровых моментов: Мerc=Rbt,sec*Wpl+Mrp=1.8*106*7.38*103+17.31*103=30.59 кН*м, Где Мrp=P2*(eop+rtng)=0.86*193.5*103*(0.07+0.034)=17.31 кН*м – ядровой момент усилия обжатия.. Поскольку М=43,29 кН*м>Мerc=30,59 кН*м, трещины в растянутой зоне образуется. Проверяем, образуется ли начальные трещины в верхней зоне плиты при обжатии при --- коэффициента точности натяжения jsp=1.14. Расчетное условие: P1(eop-?rnj)?Rbtp*W’pl=9.95 кН*м. Rbtp*Wpl=1.15*106*11.07*10-3=16.61 кН*м; Т.к. P1(eop-?inf)=9.95 кН*м< Rbtp*W’pl=16.61 кН*м., начальные трещины не образуются. Здесь - Rbtp=1,15 МПа – сопротивление бетона растяжению, соответствующее передаточной прочности бетона 15 МПа. 5. Расчет по раскрытию трещин, нормальных к продольной оси. Предельная ширина раскрытия трещин: непродолжительная аerc=0,4 мм, продолжительная аerc=0,3 мм. Изгибающие моменты от нормативных нагрузок: постоянной и длительной М=34,59 кН*м, полной М=43,29 кН*м. Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузок: Gs=[M-P2(Z1-lsn) ]/Ws=[34.59*103-193.5*103(0.1515-0)]/0.086*10- 3=61.33 МПа. Где Z1=h0-0.5hf’/2=0.17-0.5*0.037/2=0.1515 – плечо внутренней пары сил; lsn=0 так как усилие обжатия l приложено в ц.т. площади нижней напрягаемой арматуры, момент: Ws=As*Z1=5.65*10-4*0.1515=0.086*10-3 – момент сопротивления сечения по растянутой арматуре. Приращение напряжений в арматуре от действия полной нагрузки: Gs=(43,29*103-193,5*103*0,1515)/0,086*10-3=162,5 Мпа. Вычисляем: - ширина раскрытия трещин от непродолжительного действия веса нагрузки. acrc1=0.02(3.5-100?)g??l(Gs/Es)3?d=0.02(3.5- 100*0.0138)1*1*1(162.5*106/190*104)* 3?0.012=0.13*10-3 m, где ?=Аs/b*h0=5.65*10-4/0.24*0.17=0.038, d=0.012 m – диаметр растянутой арматуры. - ширину раскрытия трещин от непродолжительного действия постоянной и длительной нагрузок: acrc1’=0.02(3.5-100*0.0138)*1*1*1(61.33*106/190*104)* 3?0.012=0.07*10-3 m. - ширину раскрытия трещин от постоянной и длительной нагрузок : acrc2=0.02(3.5-100*0.0138)*1*1*1,5(61.33*106/190*104)* 3?0.012=0.105*10-3 m Непродолжительная ширина раскрытия трещин: acrc= acrc1- acrc’+ acrc2=(0.13-0.07+0.105)*103=0.165*10-3 m1 – принимаем ?m=1. ?s=1.25-0.8=0.45опорного). В данном случае проверку не производим, т.к. Мпр=83,46 кН*мQbmin/2h0=42.77*103/2*0.44=48.6 кН/м – ус-ие удолетворяется. Требование: Smax= ?l?Rbtb*b*h02/Qmax=1.5*0.9*0.9*106*0.2*0.442/156.8*103=0.3 m>S=0.15 m – выполняется. При расчете прочности вычисляем: Mb= ?l?Rbtb*b*h02=2*0.9*0.9*106*0.2*0.442=62.73 кН*м. Поскольку q1=g+?/2=(24.95+27.36/2)*103=38.63 кН*м>0.56qsw=0.56*67.95*103=38.05 кН*м, вычисляем значение (с) по q?: с= ?Мв/(q1+qsw)=?62.73*103/(38.63+67.95)*103=0.77 m2h0=2*0.44=0.88 m – принимаем С0=0,88 м. Тогда Qsw=qsw*c0=97.95*103*0.88=59.8 кН. Условие прочности: Qb+Qsw=(81.47+59.8)*103=141.27 кН>Q=127.05 кН – удовлетворяется. Производим проверку по сжатой наклонной полосе: ?sw=Asw//b*S=0.392*10-4/0.2*0.15=0.0013; ?=Es/Eb=170*109/27*109=6.13; ?w1=1+5*?* ?w1=1+5*6.13**0.0013=1.04; ?b1=1-0.01*Rb=1+0.01*0.9*11.5=0.9. Условие прочности: Qmax=156.8 кН20d=20*0.012=0.24m. Во II сечении при шаге хомутов S=0.4 m: Qsw=260*106*0.392*10-4=25.48 кН/м. Длина анкеровки W2=40*103/2.25.48*103+5*0.012=0.84m>20d=0.24m. Во II пролете принята арматура 2 ш12 А-III+2ш14 A-III с Аs=5,34*10-4 m2. h0=0.44 m; ?=5.34*10-4/0.2*0.44=0.091; ?=0.0061*365*106/0.9*11.5*106=0.215; ?=1-0.5*0.215=0.892; Ms=As*Rs*h0*?=5.34*10-4*365*106*0.892*0.44=76.5 кН*м. Стержни 2ш14 А-III с As=3.08*10-4 m2 доводится до опор h0=0.47 m; ?=3.08*10-4/0.2*0.47=0.0033; ?=0.0033*365*106/0.9*11.5*106=0.116; ?=1-0.5*0.116=0.942. Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м. В месте теоретического обрыва стержня 2ш12 А-III поперечная сила Q3=40 кН; qsw=25.48 кН/м; Длина анкеровки: W3=40*103/2*25.48*103+5*0.00120.84m>20d=20*0.0012=0.24m. На средней опоре принята арматура 2ш10 А-III+2ш20 А-III с As=7.85*10-4 m2. h0=0.44 m; ?=7.65*10-4/0.2*0.44=0.0089; ?=0.0089*365*106/0.9*11.5*106=0.314; ?=1-0.5*0.314=0.843. Ms=As*Rs*h0*?=7.65*10-4*365*106*0.843*0.44=106.28 кН*м. Графически определим точки теоретического обрыва двух стержней ш20А – III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m. На крайней опоре принята арматура 2ш14 А – III с As=3.08*10-4 m2. Арматура располагается в один ряд. h0=0.47m; ?=3.08*10-4/0.2*0.47=0.0033; ?=0.0033*365*106/0.9*11.5*106=0.116; ?=1-0.5*0.116=0.942. Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м. Поперечная сила в ---- обрыва стержней Qs=100 кН; Qsw=67.95 кН/м; Длина анкеровки – W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m. 3.10 Расчет стыка сборных элементов ригеля. Рассматриваем вариант бетонированного стыка. В этом случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной. Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа. gbr=0.9; Арматура – класса А-III, Rs=365 МПа. Вычисляем: ?m=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195 По таблице 3.1[1] находим: ?=0,89 и определяем площадь сечения соединительных стержней: As=M/Rs*h0* ?=94.96*103/365*106*0.89*0.485=6.03*10-4 m2. Принимаем: 2ш20 А-III с As=6.28*10-4 m2. Длину сварных швов определяем следующим образом: Slm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН, где N=M/h0*?=94.96*103/0.89*0.485=220 кН. Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций. При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна : lw=Slw/4+0.01=0.22/4+0.01=0.06 m. Конструктивное требование: lw=5d=5*0.02=0.1 m. Принимаем l=0.1m Площадь закладной детали из условия работы на растяжение: A=N/Rs=220*103/210*106=10.5*10-4 m2. Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м; A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2. Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m. 3. Расчет внецентренно сжатой колонны. 1. Определение продольных сил от расчетных усилий. Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2. Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН. Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН. Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН; Итого: Gпокр=141,08 кН. Снеговая нагрузка для города Москвы – при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная: Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН. Продольная сила колонны I этажа от длительных нагрузок : Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН. 2. Определение изгибающих моментов колонны от расчетных нагрузок. Определяем максимальный момент колонн – при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок: М21=(?*g+?*?)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м. N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м. При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м; М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м. Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках ?Мl=(102.65-81.19)*103=21.46 кН*м; ?М=(119,85-89,52)*103=30,33 кН*м. Изгибающий момент колонны I этажа: М1l=0.6*?Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*?М=0,6*30,33*103=18,2 кН*м. Вычисляем изгибающие моменты колонны, соответствующие максимальным продольным силам; для этого используем загружение пролетов ригеля по схеме 1. От длительных нагрузок : ?Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м; Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м. От полных нагрузок: ?М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м; изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м. 3. Характеристики прочности бетона и арматуры. Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа. Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа. Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от длительных нагрузок M1l=6.5 кН*м. Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН, в точности Nl=608.81*103-88.92*103/2=564.35 кН. 4. Подбор сечений симметричной арматуры As= As’. Приведем расчет по второй комбинаций усилий. Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m. Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m> случайного, его и принимаем для расчета статически неопределимой системы. Находим значение моментов в сечении относительно оси, проходящий через ц.т. наименее сжатой (растянутой) арматуры. При длительной нагрузки: : М1l=Мl+Nl(h/2- a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки: М1=18,2*103+620,1*103*0,085=70,91 кН*м. Отношение l0/?=4.2/0.0723=58.1>14 Расчетную длину многоэтажных зданий при жестком соединении ригеля с колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В нашем случае l0=l=4,2 м. Для тяжелого бетона: ?l=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение j=l0/h=0.029/0.25=0.116?R. 2) ?S= ?n(e/h0-1+ ?n/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0 j’=a’/h0=0.04/0.21=0.19. 3) ?= ?n(1- ?R)+2* ?S* ?R /1- ?R+2* ?S=(1.14*(1-0.6)+2*0.27*0.6)/1- 0.6+2*0.27=0.83> ?R Определяем площадь сечения арматуры: As=As’=N/Rs*(e/h0- ?*(1- ?/2)/ ?n)/1-j’=620.1*103/365*103*(0.13/0.21- 0.83*(1-0.83)/1.14)/1-0.19= =4.05*10-4 m2. Принимаем 2ш18 А-III с As=5.09*10-4 m2. Проверяем коэффициенты армирования: ?=2*As/A=2*5.09*10- 4/0.252=0.016Q=10.19 кН – условие прочности удовлетворяется. Расчетные изгибающие моменты в сечениях I-I и II-II. MI=0.125*p(a-hcol)2*b=0.125*156.74*103*(2.1-0.25) 2*2.1=140.82 кН*м. MII=0.125*p(a-a1)2*b=0.125*156.74*103*(2.1-0.9) 2*2.1=59.25 кН*м. Площадь сечения арматуры: ASI=MI/0.9*h0*Rs=140.82*103/0.9*0.86*280*106=6.5*10-4 m2. ASII=MII/0.9*h01*Rs=59.25*103/0.9*0.56*280*106=4.2*10-4 m2. Принимаем нестандартную сварную сетку с одинаковой рабочей арматурой 9ш10 А- II c As=7.07*10-4 m2 с шагом S=0.25 m. Процент армирования: ?I=ASI*100/bI*h0=7.07*10-4/0.9*0.86=0.09% ?II=ASII*100/bII*h01=7.07*10-4/1.5*0.56=0.084% что больше ?mim=0.09% и меньше ?max=3%. 6 Расчет монолитного ребристого перекрытия. Монолитное ребристое перекрытие компонуем с поперечными главнами балками и продольными второстепенными балками. Второстепенные балки размещаются по осям колони в третех пролете главной балки, при этом пролеты плиты между осями ребер равны: l/3= 5.2/3=1.73 m. Предварительно задаемся размерами сечения балок: главная балка: высота h=(1/8+1/15)*f=(1/12)*5.2=0.45 m; ширина b=(0.4/0.5)*h=0.45*0.45=0.2 m. Второстепенная балка: высота h=(1/12+1/20)*l=(1/15)*6=0.4m; ширина b=(0.4/0.5)*h=0.5*0.4=0.2m. 6.1 Расчет многопролетной плиты монолитного перекрытия. 6.1.1 Расчетный пролет и нагрузки. Расчетный пролет плиты равен расстоянию в свему между гранями ребер l0=1.73-0.2=1.53m, в продольном направлении – l0=6-0.2=5.8 m. Отношение пролетов 5,8/1,53=3,8>2 – плиту рассчитываем как работающую по короткому направлению. Принимаем толщину плиты 0,05 м. Таблица 3 Нагрузка на 1 м2 перекрытия. |Нагрузка |Нормативная |Коэффициент |Расчетная | | |нагрузка, |надежности по |нагрузка, | | |Н/м2 |нагрузке |Н/м2 | |Постоянная: | | | | |- от собственного | | | | |веса плиты, |1250 |1,1 |1375 | |?=0,05м, ?=2500 кг/м3| | | | | |440 |1,3 |570 | |- то же слоя | | | | |цементного р-ра, |230 |1,1 |255 | |?=20 мм, ?=2200 кг/м3| | | | | | | | | |- то же керамических | | | | |плиток, | | | | |?=0,013 м, ?=1800 | | | | |кг/м3 | | | | |Итого |1920 |- |2200 | |Временная |4000 |1,2 |4800 | | |5920 |- |7000 | |Полная | | | | Для расчета многопролетной плиты выделяем полосу шириной 1 м, при этом расчетная нагрузка на 1 м длины с учетом коэффициента надежности по назначению здания jn=0.95 нагрузка на 1м: (g+?)=7000*0.95=6.65 кН/м. Изгибающие моменты определяем как для многопролетной плиты с учетом перераспределения моментов: - в средних пролетах и на средних опорах: М=(g+?)*l20/16=6.65*103*1.532/16=0.97 кН*м. - в I пролете и на I промежуточной опоре: М=(g+?)*l20/11=6.65*103*1.532/11=1.42 кН*м. Средние пролеты плиты окаймлены по всему контуру монолитно связанными с ними балками и под влиянием возникающих распоров изгибающие моменты уменьшаются на 20%, если h/l=1/30. При h/l=0,05/1,53=1/31Qbmin/2*h0=23*83*103/2*0.265=44.96 кН/м – удовлетворяется. Требование: Smax= ?b4*Rbt*b*h0/Qmax=1.5*0.9*0.75*106*0.2*0.2652/45.83*103=0.31m>S=0.15m – выполняется. При расчете прочности вычисляем: Mb= ?b3*(1+?f)*Rbt*b*h02=2*1.11*0.9*0.75*106*0.2*0.2652=21.05 кН*м. При q1=g+?/2=(5.28+7.89/2)*103=9.23 кН/м.3.33h0=3.33*0.265=0.88m – принимаем с=0,88 м, тогда Qb=Me/c=21.05*103/0.88=23.92 кН> Qbmin=23.83 кН. Поперечная сила в вершине наклонного сечения Q=Qmax-q1*c=45.83*103- 9.23*103*0.88=37.71 кН. Длина проекции расчетного наклонного сечения с0=?Mb/qsw=?21.05*103/67.95*103=0.56m>2*h0=2*0.265=0.53 m – принимаем с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН –удовлетворяется. Проверка по сжатой наклонной полосе: ?w=Asw/b*S=0.392*10-4/0.2*0.15=0.0013; ?s=Es/Eb=170*109/23*109=7.4; ?w1=1+5* ?s*?=1+5*7.4*0.0013=1.05; ?b1=1-0.01*Rb=1-0.01*0.9*8.5=0.92; Условия прочности: Qmax=45.83 кН?0.3* ?b1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН – удовлетворяется. |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |