реферат бесплатно, курсовые работы
 
Главная | Карта сайта
реферат бесплатно, курсовые работы
РАЗДЕЛЫ

реферат бесплатно, курсовые работы
ПАРТНЕРЫ

реферат бесплатно, курсовые работы
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат бесплатно, курсовые работы
ПОИСК
Введите фамилию автора:


Записка к расчетам

Записка к расчетам

КОМПОНОВКА КОНСТРУКТИВНОЙ СХЕМЫ СБОРНОГО ПЕРЕКРЫТИЯ.

Ригели поперечных рам – трехпролетные, на опорах жестко соединены с

крайними и средними колоннами. Ригели расположен в поперечном

направлении, за счет чего достигается большая жесткость здания.

Поскольку нормативная нагрузка на перекрытие (4 кПа) меньше 5 кПа,

принимаем многопустотные плиты. Наименьшая ширина плиты – 1400 мм.

Связевые плиты расположены по рядам колонн. В среднем пролете

предусмотрен такой один доборный элемент шириной 1000 мм. В крайних

пролетах предусмотрены по монолитному участку шириной 425 мм.

В продольном направлении жесткость здания обеспечивается вертикальными

связями, устанавливаемыми в одном среднем пролете по каждому ряду колонн.

В поперечном направлении жесткость здания обеспечивается по релико-

связевой системе: ветровая нагрузка через перекрытие, работающие как

горизонтальные жесткие диски, предается на торцевые стены, выполняющие

функции вертикальных связевых диафрагм, и поперечные рамы.

Поперечные же рамы работают только на вертикальную нагрузку.

1. Расчет многопустотной преднопряженной плиты по двум группам предельных

состояний.

1. Расчет многопустотной преднопряженной плиты по I группе предельных

состояний

2.1.1 Расчетный пролет и нагрузки.

Для установления расчетного пролета плиты предварительно задается

размерами – ригеля:

высота h=(1/8+1/15)*

l= (1/11)*5.2=0.47?0.5 м. ширина b=(0.3/0.4)*hbm=0.4*0.5=0.2 m.

При опирании на ригель поверху расчетный пролет плиты равен: l0=l-

b/2=6-0.2/2=5.9 m.

Таблица 1. Нормативные и расчетные нагрузки на 1 м2 перекрытия

|Вид нагрузки |Нормативная |Коэффициент |Расчетная |

| |нагрузка, |надежности по |нагрузка, |

| |Н/м2 |нагрузке |Н/м2 |

|Постоянная: |2800 |1,1 |3080 |

|-собственный вес | | | |

|многопустотной | | | |

|плиты | | | |

|-то же слоя |440 |1,3 |570 |

|цементного | | | |

|раствора, | | | |

|g=20 мм, | | | |

|R=2000кг/м3 |240 |1,1 |270 |

|-тоже керамических| | | |

|плиток, | | | |

|g=13 мм, | | | |

|R=1300кг/м3 | | | |

|Итого |3480 |- |3920 |

|Временная |4000 |1,2 |4800 |

|В т.ч. длительная |2500 |1,2 |3000 |

|краткосрочная |1500 |1,2 |1800 |

|Полная |7480 |- |8720 |

|В т.ч. постоянная | | | |

|и длительная |5980 |- |- |

|кратковременная |1500 |- |- |

Расчетная нагрузка на 1 м длины при ширине плиты 1,4 м с учетом

коэффициента надежности по назначению здания јn=0,95: постоянная

g=3920*1.4*0.95=5.21 кН/м; полная g+ ? = 8720*1,4*0,95=11,6 кН/м;

временная ?=4800*1,4*0,95=6,38 кН/м.

Нормативная нагрузка на 1 м длины: постоянная g=3480*1.4*0.95=4.63

кН/м; полная g+ ?=7480*1.4*0.95=9.95 кН/м, в точности постоянная и

длительная (g+ ?)l=5980*1.4*0.95=7.95 кН/м.

2.1.2 Усилие от расчетных и нормативных нагрузок.

От расчетной нагрузки М=( g+ ?)l02/8=11.6*103*5.92/8=50.47 кН*м;

Q==( g+ ?)l0/2=11.6*103*5.92/2=34.22 кН

От нормативной полной нагрузки М=9.95*103*5.92/8=43.29 кН*м.

Q=9.95*103*5.92/2=29.35 кН. От нормативной постоянной и длительной

нагрузки М=7.95*103*5.92/8=34.59 кН*м.

2.1.3 Установление размеров сечения плиты.

Высота сечения многопустотной преднопряженной плиты h=l0/30=5.9/30?0.2

м. (8 круглых пустот диаметром 0.14 м).

Рабочая высота сечения h0=h-e=0.2-0.03?0.17 м

Размеры: толщина верхней и нижней полок (0.2-0.14) *0.5=0.03 м.

Ширина ребер: средних 0.025 м, крайних 0.0475 м.

В расчетах по предельным состоянием, I группы расчетная толщина сжатой

полки таврого сечения hf’=0.03 м; отношение hf’/h=0.03/0.2=0.15>0.1-при

этом в расчет вводится вся ширина полки bf’=1.36 м;рр расчетная ширина

ребра b=1.36-8*0.14=0.24 м.

Рисунок 2 – Поперечные сечения плиты а) к расчету прочности

б)

к расчету по образованию трещин.

2.1.4 Характеристики прочности в стене и арматуры.

Многопустотную преднопряженную плиту армируем стержневой арматурой

класса А-IV с электротермическим способом натяжения на упоры форм. К

трещиностойкости плиты предъявляют требования 3 категории. Изделие

подвергаем тепловой обработке при атмосферном давлении.

Бетон тяжелый класса В30, соответствующий напрягаемой арматуре.

Призменная прочность нормативная Rbn=Rb,ser=22 МПа, расчетная Rb=17

МПа, коэффициент условий работы бетона jb=0.9; нормативное сопротивление

при растяжении Rbth=Rbt,ser=1.8 МПа, расчетное Rbt=1.2 МПа; начальный

модуль упругости Еb=29 000 МПа.

Передаточная прочность бетона Rbp устанавливается так чтобы

обжатии отношения Gbp/Rbp? 0.79

Арматура продольных ребер – класса А-IV, нормативное

сопротивление Rsn=590 МПа, расчетное сопротивление Rs=510 МПа, модуль

упругости Еs=190 000 МПа.

Преднапряжение арматуры принимаем равным

Gsp=0.75Rsn=0.75*590*106=442.5 МПа.

Проверяем выполнение условия: при электротермическом способе натяжения

р=30+360/l=30+360/6=90 МПа.

Gsp+p=(442.5+90)*106=532.5 МПаjspmin=0.1,

где n=5 – число напрягаемых стержней;

Коэффициент точности натяжения при благоприятном преднапряжении jsp=1-

?jsp=1-0,14=0,86

При проверке на образование трещин в верхней для плиты при обжатии

принимаем jsp=1+0,14=1,14.

Преднапряжение с учетом точности натяжения Gsp=0.86*442.5*106=380.6

МПа.

2.1.5 Расчет прочности плиты по сечению, нормальному к продольной оси.

M=50.47 кН*м.

Вычисляем ?m=М/(Rb*bf’*h20)=50.47*103/(0.9*17*106*1.36*0.172)=0.084.

По таблице 3.1[1] находим: ?=0,955; ?=0,09; х= ?*h0=0,09*0,17=0,015

м ?=1.2, где ?=1,2 – для арматуры

класса А-IV

Принимаем jSG= ?=1,2.

Вычисляем площадь сечения растянутой арматуры:

Аs=М/ jSG*RS* ?*h0=50.47*103/1.2*510*106*0.955*.17=5.08*10-4 м2.

Принимаем 5ш12 А-IV с А3=5,65*10-4 м2.

2. Расчет многопустотной плиты по предельным состояниям II группы.

1. Геометрические характеристики приведенного сечения.

Круглое очертание пустот заменяем эквивалентным квадратным со стороной

h=0.9*d=0.9*0.14=0.126 m.

Толщина полок эквивалентного сечения hf’=hf=(0.2-0.126)*0.5=0.037 м.

Ширина ребра b=1.36-8*0.126=0.35 м. Ширина пустот:1.36—0.35=1.01; Площадь

приведенного сечения Ared=1,36*0,2-1,01*0,126=0,145 м2.

Расстояние от нижней грани до ц.т. приведенного сечения

y0=0.5*h=0.5*0.2=0.1 m.

Момент инерции сечения Jred=1.36*0.23/12-1.01*0.1263/12=7.38*10-4 m4.

Момент сопротивления сечения по нижней зоне Wred= Jred/ y0=7.38*10-

4/0.1=7.38*10-3 m3; то же по верхней зоне: Wred’=7.38*10-3 m3.

Расстояние от ядровой точки, наиболее удаленной от растянутой зоны

(верхней) до ц.т. сечения.

? = ?n*(Wred/Ared)=0.85*(7.38*10-3/0.185)=0.034 m.

то же, наименее удаленной от растянутой зоны (нижней): ?Tnf =

0.034m.

здесь: ?n = 1.6- Gbp/Rbp=1.6-0.75=0.85.

Отношение напряжения в бетоне от нормативных нагрузок и усилия обжатия к

расчетному сопротивлению бетона для предельного состояния II группы

предварительно принимаем равным 0,75.

Упругопластический момент сопротивления по растянутой зоне Wpl=j*

Wred=1.5*7.38*10-3=11.07*10-3 m3; здесь j=1.5 – для двутаврового сечения

при 2q=8.4 кН/м, принимаем

с=2,5h=2.5*0.17=0.43 m.

Другое условие: Q= Qmax-qc=(34.22-8.4*0.43)*103=30.61 кН/м;

Qb= ?bn(1+ ?bn)

Rbt*b*h02*c=1.5*1.44*0.9*1.2*106*0.24*0.172/0.43=37.63 кН>Q=30.61 кН –

удовлетворяет также.

Следствие, поперечная арматура по расчету не требуется. Конструктивно

на приопорных участках длиной 0,25l устанавливаем арматуру ш4 Вр-I с шагом

S=h/2=0.2/2=0.1m; в средней части пролета поперечно арматуре не

применяется.

4. Расчет по образованию трещин, нормальных к продольной оси. М=43.29

кН*м.

Условие: М?Мerc

Вычисляем момент образования трещин по приближенному способу

ядровых моментов:

Мerc=Rbt,sec*Wpl+Mrp=1.8*106*7.38*103+17.31*103=30.59

кН*м,

Где Мrp=P2*(eop+rtng)=0.86*193.5*103*(0.07+0.034)=17.31 кН*м – ядровой

момент усилия обжатия..

Поскольку М=43,29 кН*м>Мerc=30,59 кН*м, трещины в растянутой зоне

образуется.

Проверяем, образуется ли начальные трещины в верхней зоне плиты

при обжатии при --- коэффициента точности натяжения jsp=1.14.

Расчетное условие: P1(eop-?rnj)?Rbtp*W’pl=9.95 кН*м.

Rbtp*Wpl=1.15*106*11.07*10-3=16.61 кН*м;

Т.к. P1(eop-?inf)=9.95 кН*м< Rbtp*W’pl=16.61 кН*м., начальные

трещины не образуются.

Здесь - Rbtp=1,15 МПа – сопротивление бетона растяжению,

соответствующее передаточной прочности бетона 15 МПа.

5. Расчет по раскрытию трещин, нормальных к продольной оси.

Предельная ширина раскрытия трещин: непродолжительная аerc=0,4 мм,

продолжительная аerc=0,3 мм. Изгибающие моменты от нормативных

нагрузок: постоянной и длительной М=34,59 кН*м, полной М=43,29 кН*м.

Приращение напряжений в растянутой арматуре от действия постоянной и

длительной нагрузок:

Gs=[M-P2(Z1-lsn) ]/Ws=[34.59*103-193.5*103(0.1515-0)]/0.086*10-

3=61.33 МПа.

Где Z1=h0-0.5hf’/2=0.17-0.5*0.037/2=0.1515 – плечо внутренней пары

сил;

lsn=0 так как усилие обжатия l приложено в ц.т. площади нижней

напрягаемой арматуры, момент: Ws=As*Z1=5.65*10-4*0.1515=0.086*10-3 –

момент сопротивления сечения по растянутой арматуре.

Приращение напряжений в арматуре от действия полной нагрузки:

Gs=(43,29*103-193,5*103*0,1515)/0,086*10-3=162,5 Мпа.

Вычисляем:

- ширина раскрытия трещин от непродолжительного действия веса нагрузки.

acrc1=0.02(3.5-100?)g??l(Gs/Es)3?d=0.02(3.5-

100*0.0138)1*1*1(162.5*106/190*104)* 3?0.012=0.13*10-3 m, где

?=Аs/b*h0=5.65*10-4/0.24*0.17=0.038, d=0.012 m – диаметр растянутой

арматуры.

- ширину раскрытия трещин от непродолжительного действия постоянной и

длительной нагрузок:

acrc1’=0.02(3.5-100*0.0138)*1*1*1(61.33*106/190*104)*

3?0.012=0.07*10-3 m.

- ширину раскрытия трещин от постоянной и длительной нагрузок :

acrc2=0.02(3.5-100*0.0138)*1*1*1,5(61.33*106/190*104)*

3?0.012=0.105*10-3 m

Непродолжительная ширина раскрытия трещин:

acrc= acrc1- acrc’+ acrc2=(0.13-0.07+0.105)*103=0.165*10-3 m1 – принимаем ?m=1.

?s=1.25-0.8=0.45опорного). В данном случае

проверку не производим, т.к. Мпр=83,46 кН*мQbmin/2h0=42.77*103/2*0.44=48.6 кН/м – ус-ие

удолетворяется.

Требование: Smax=

?l?Rbtb*b*h02/Qmax=1.5*0.9*0.9*106*0.2*0.442/156.8*103=0.3 m>S=0.15 m –

выполняется.

При расчете прочности вычисляем: Mb=

?l?Rbtb*b*h02=2*0.9*0.9*106*0.2*0.442=62.73 кН*м. Поскольку

q1=g+?/2=(24.95+27.36/2)*103=38.63 кН*м>0.56qsw=0.56*67.95*103=38.05

кН*м, вычисляем значение (с) по q?:

с= ?Мв/(q1+qsw)=?62.73*103/(38.63+67.95)*103=0.77

m2h0=2*0.44=0.88 m – принимаем

С0=0,88 м.

Тогда Qsw=qsw*c0=97.95*103*0.88=59.8 кН.

Условие прочности: Qb+Qsw=(81.47+59.8)*103=141.27 кН>Q=127.05 кН –

удовлетворяется.

Производим проверку по сжатой наклонной полосе:

?sw=Asw//b*S=0.392*10-4/0.2*0.15=0.0013;

?=Es/Eb=170*109/27*109=6.13;

?w1=1+5*?* ?w1=1+5*6.13**0.0013=1.04;

?b1=1-0.01*Rb=1+0.01*0.9*11.5=0.9.

Условие прочности: Qmax=156.8 кН20d=20*0.012=0.24m.

Во II сечении при шаге хомутов S=0.4 m:

Qsw=260*106*0.392*10-4=25.48 кН/м.

Длина анкеровки W2=40*103/2.25.48*103+5*0.012=0.84m>20d=0.24m.

Во II пролете принята арматура 2 ш12 А-III+2ш14 A-III с Аs=5,34*10-4 m2.

h0=0.44 m;

?=5.34*10-4/0.2*0.44=0.091;

?=0.0061*365*106/0.9*11.5*106=0.215;

?=1-0.5*0.215=0.892;

Ms=As*Rs*h0*?=5.34*10-4*365*106*0.892*0.44=76.5 кН*м.

Стержни 2ш14 А-III с As=3.08*10-4 m2 доводится до опор h0=0.47 m;

?=3.08*10-4/0.2*0.47=0.0033;

?=0.0033*365*106/0.9*11.5*106=0.116;

?=1-0.5*0.116=0.942.

Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

В месте теоретического обрыва стержня 2ш12 А-III поперечная сила Q3=40

кН;

qsw=25.48 кН/м; Длина анкеровки:

W3=40*103/2*25.48*103+5*0.00120.84m>20d=20*0.0012=0.24m.

На средней опоре принята арматура 2ш10 А-III+2ш20 А-III с As=7.85*10-4

m2.

h0=0.44 m;

?=7.65*10-4/0.2*0.44=0.0089;

?=0.0089*365*106/0.9*11.5*106=0.314;

?=1-0.5*0.314=0.843.

Ms=As*Rs*h0*?=7.65*10-4*365*106*0.843*0.44=106.28 кН*м.

Графически определим точки теоретического обрыва двух стержней ш20А –

III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина

анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m.

На крайней опоре принята арматура 2ш14 А – III с As=3.08*10-4 m2.

Арматура располагается в один ряд.

h0=0.47m;

?=3.08*10-4/0.2*0.47=0.0033;

?=0.0033*365*106/0.9*11.5*106=0.116;

?=1-0.5*0.116=0.942.

Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

Поперечная сила в ---- обрыва стержней Qs=100 кН;

Qsw=67.95 кН/м; Длина анкеровки –

W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.

3.10 Расчет стыка сборных элементов ригеля.

Рассматриваем вариант бетонированного стыка. В этом случае изгибающий

момент на опоре воспринимается соединительными и бетоном, заполняющий

полость между торцами ригелей и колонной.

Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота

сечения ригеля

h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20;

Rb=11.5 МПа.

gbr=0.9;

Арматура – класса А-III, Rs=365 МПа.

Вычисляем: ?m=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195

По таблице 3.1[1] находим: ?=0,89 и определяем площадь сечения

соединительных стержней:

As=M/Rs*h0* ?=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.

Принимаем: 2ш20 А-III с As=6.28*10-4 m2.

Длину сварных швов определяем следующим образом:

Slm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,

где N=M/h0*?=94.96*103/0.89*0.485=220 кН.

Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов

в случае перераспределение моментов вследствие пластических деформаций.

При двух стыковых стержнях и двусторонних швах длина каждого шва будет

равна :

lw=Slw/4+0.01=0.22/4+0.01=0.06 m.

Конструктивное требование: lw=5d=5*0.02=0.1 m.

Принимаем l=0.1m

Площадь закладной детали из условия работы на растяжение:

A=N/Rs=220*103/210*106=10.5*10-4 m2.

Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;

A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.

Длина стыковых стержней складывается из размера сечения колонны, двух

зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

3. Расчет внецентренно сжатой колонны.

1. Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна

Агр=6*5,2=31,2 м2.

Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95:

Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66

кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого:

Gперекр=138,72 кН.

Временная нагрузка от перекрытия одного этажа с учетом jn=0.95:

Qвр=4800*31,2*0,95=142,27 кН, в точности длительная:

Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35

кН.

Постоянная нагрузка при весе кровли и плиты 4 КПа составляет:

Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны:

Qcol=6,86 кН;

Итого: Gпокр=141,08 кН.

Снеговая нагрузка для города Москвы – при коэффициентах надежности по

нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5

кН, в точности длительная:

Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.

Продольная сила колонны I этажа от длительных нагрузок :

Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки

N=(608.81+29.05+53.35)*103=691.21 кН.

2. Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн – при загружении 1+2 без

перераспределения моментов. При действии длительных нагрузок:

М21=(?*g+?*?)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.

N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.

При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= -

119,85 кН*м;

М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.

Разность абсолютных значений опорных моментов в узле рамы: при

длительных нагрузках

?Мl=(102.65-81.19)*103=21.46 кН*м;

?М=(119,85-89,52)*103=30,33 кН*м.

Изгибающий момент колонны I этажа: М1l=0.6*?Мl=0.6*21.46*103=12.88

кН*м; от полной нагрузки: М1=0,6*?М=0,6*30,33*103=18,2 кН*м.

Вычисляем изгибающие моменты колонны, соответствующие максимальным

продольным силам; для этого используем загружение пролетов ригеля по

схеме 1.

От длительных нагрузок : ?Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;

Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.

От полных нагрузок: ?М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м;

изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

3. Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.

Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.

Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных

нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от

длительных нагрузок M1l=6.5 кН*м.

Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и

соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН,

в точности Nl=608.81*103-88.92*103/2=564.35 кН.

4. Подбор сечений симметричной арматуры As= As’.

Приведем расчет по второй комбинаций усилий.

Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.

Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный

эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m>

случайного, его и принимаем для расчета статически неопределимой системы.

Находим значение моментов в сечении относительно оси, проходящий через

ц.т. наименее сжатой (растянутой) арматуры.

При длительной нагрузки: : М1l=Мl+Nl(h/2-

a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки:

М1=18,2*103+620,1*103*0,085=70,91 кН*м.

Отношение l0/?=4.2/0.0723=58.1>14

Расчетную длину многоэтажных зданий при жестком соединении ригеля с

колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В

нашем случае l0=l=4,2 м.

Для тяжелого бетона: ?l=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение

j=l0/h=0.029/0.25=0.116?R.

2) ?S= ?n(e/h0-1+ ?n/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0

j’=a’/h0=0.04/0.21=0.19.

3) ?= ?n(1- ?R)+2* ?S* ?R /1- ?R+2* ?S=(1.14*(1-0.6)+2*0.27*0.6)/1-

0.6+2*0.27=0.83> ?R

Определяем площадь сечения арматуры:

As=As’=N/Rs*(e/h0- ?*(1- ?/2)/ ?n)/1-j’=620.1*103/365*103*(0.13/0.21-

0.83*(1-0.83)/1.14)/1-0.19=

=4.05*10-4 m2.

Принимаем 2ш18 А-III с As=5.09*10-4 m2.

Проверяем коэффициенты армирования: ?=2*As/A=2*5.09*10-

4/0.252=0.016Q=10.19 кН – условие

прочности удовлетворяется.

Расчетные изгибающие моменты в сечениях I-I и II-II.

MI=0.125*p(a-hcol)2*b=0.125*156.74*103*(2.1-0.25) 2*2.1=140.82 кН*м.

MII=0.125*p(a-a1)2*b=0.125*156.74*103*(2.1-0.9) 2*2.1=59.25 кН*м.

Площадь сечения арматуры:

ASI=MI/0.9*h0*Rs=140.82*103/0.9*0.86*280*106=6.5*10-4 m2.

ASII=MII/0.9*h01*Rs=59.25*103/0.9*0.56*280*106=4.2*10-4 m2.

Принимаем нестандартную сварную сетку с одинаковой рабочей арматурой 9ш10 А-

II c As=7.07*10-4 m2 с шагом S=0.25 m.

Процент армирования:

?I=ASI*100/bI*h0=7.07*10-4/0.9*0.86=0.09%

?II=ASII*100/bII*h01=7.07*10-4/1.5*0.56=0.084%

что больше ?mim=0.09% и меньше ?max=3%.

6 Расчет монолитного ребристого перекрытия.

Монолитное ребристое перекрытие компонуем с поперечными главнами

балками и продольными второстепенными балками.

Второстепенные балки размещаются по осям колони в третех пролете

главной балки, при этом пролеты плиты между осями ребер равны: l/3=

5.2/3=1.73 m.

Предварительно задаемся размерами сечения балок: главная балка:

высота h=(1/8+1/15)*f=(1/12)*5.2=0.45 m; ширина b=(0.4/0.5)*h=0.45*0.45=0.2

m.

Второстепенная балка: высота h=(1/12+1/20)*l=(1/15)*6=0.4m; ширина

b=(0.4/0.5)*h=0.5*0.4=0.2m.

6.1 Расчет многопролетной плиты монолитного перекрытия.

6.1.1 Расчетный пролет и нагрузки.

Расчетный пролет плиты равен расстоянию в свему между гранями ребер

l0=1.73-0.2=1.53m, в продольном направлении – l0=6-0.2=5.8 m. Отношение

пролетов 5,8/1,53=3,8>2 – плиту рассчитываем как работающую по короткому

направлению. Принимаем толщину плиты 0,05 м.

Таблица 3 Нагрузка на 1 м2 перекрытия.

|Нагрузка |Нормативная |Коэффициент |Расчетная |

| |нагрузка, |надежности по |нагрузка, |

| |Н/м2 |нагрузке |Н/м2 |

|Постоянная: | | | |

|- от собственного | | | |

|веса плиты, |1250 |1,1 |1375 |

|?=0,05м, ?=2500 кг/м3| | | |

| |440 |1,3 |570 |

|- то же слоя | | | |

|цементного р-ра, |230 |1,1 |255 |

|?=20 мм, ?=2200 кг/м3| | | |

| | | | |

|- то же керамических | | | |

|плиток, | | | |

|?=0,013 м, ?=1800 | | | |

|кг/м3 | | | |

|Итого |1920 |- |2200 |

|Временная |4000 |1,2 |4800 |

| |5920 |- |7000 |

|Полная | | | |

Для расчета многопролетной плиты выделяем полосу шириной 1 м, при этом

расчетная нагрузка на 1 м длины с учетом коэффициента надежности по

назначению здания jn=0.95 нагрузка на 1м:

(g+?)=7000*0.95=6.65 кН/м.

Изгибающие моменты определяем как для многопролетной плиты с учетом

перераспределения моментов:

- в средних пролетах и на средних опорах:

М=(g+?)*l20/16=6.65*103*1.532/16=0.97 кН*м.

- в I пролете и на I промежуточной опоре:

М=(g+?)*l20/11=6.65*103*1.532/11=1.42 кН*м.

Средние пролеты плиты окаймлены по всему контуру монолитно связанными

с ними балками и под влиянием возникающих распоров изгибающие моменты

уменьшаются на 20%, если h/l=1/30. При h/l=0,05/1,53=1/31Qbmin/2*h0=23*83*103/2*0.265=44.96 кН/м – удовлетворяется.

Требование: Smax=

?b4*Rbt*b*h0/Qmax=1.5*0.9*0.75*106*0.2*0.2652/45.83*103=0.31m>S=0.15m –

выполняется.

При расчете прочности вычисляем:

Mb= ?b3*(1+?f)*Rbt*b*h02=2*1.11*0.9*0.75*106*0.2*0.2652=21.05 кН*м.

При

q1=g+?/2=(5.28+7.89/2)*103=9.23 кН/м.3.33h0=3.33*0.265=0.88m – принимаем

с=0,88 м, тогда

Qb=Me/c=21.05*103/0.88=23.92 кН> Qbmin=23.83 кН.

Поперечная сила в вершине наклонного сечения Q=Qmax-q1*c=45.83*103-

9.23*103*0.88=37.71 кН. Длина проекции расчетного наклонного сечения

с0=?Mb/qsw=?21.05*103/67.95*103=0.56m>2*h0=2*0.265=0.53 m – принимаем

с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН

–удовлетворяется.

Проверка по сжатой наклонной полосе:

?w=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;

?s=Es/Eb=170*109/23*109=7.4;

?w1=1+5* ?s*?=1+5*7.4*0.0013=1.05;

?b1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;

Условия прочности:

Qmax=45.83 кН?0.3* ?b1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН

– удовлетворяется.


реферат бесплатно, курсовые работы
НОВОСТИ реферат бесплатно, курсовые работы
реферат бесплатно, курсовые работы
ВХОД реферат бесплатно, курсовые работы
Логин:
Пароль:
регистрация
забыли пароль?

реферат бесплатно, курсовые работы    
реферат бесплатно, курсовые работы
ТЕГИ реферат бесплатно, курсовые работы

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.